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INTRODUCTION 

The purpose of the research here described is to 

initiate a study of the possible transformation of dehydro-

abietonitrile into a naturally occurring diterpenoid alka­

loid, e.g. atisine, and to study the configuration and 

conformation of various derivatives of aromatic resin 

acids, especially of ring A-B cis derivatives. 
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HISTORICAL 

The diterpenoid alkaloid family can be divided into 

three groups of structurally related substances (1). The 

first two groups consist of alkaloids derived from the vari­

ous species of Aconitum and Delphinium. One group is com­

prised of comparatively simple, non-oxygenated, nontoxic 

amino alcohols generally called the atisines. Atisine (I), 

from which the group derives its name, has been isolated 

H 
oMe 

CHjOH 

OH 

II III 

from the roots of Aconitum heterophyllum (2,3,4). The se­

cond group called aconitines are much more toxic and are 

distinguished by many substituents (chiefly methoxy, hy­

droxy, and acyloxy groups). Lycoctonine (II), a member of 

this second group, has been extensively investigated in 

recent years (5,6,7,8,9). The third group consists of those 

diterpenoid alkaloids contained in the several species of 
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Garrya and are denoted by this name. Veatchine (III) de­

rived from Garrya ventchii is isomeric with atisine. This 

similarity has aided in the clarification of the chemistry 

of these diterpenoid alkaloids. 

A Degradation Product of Atisine 

The dehydrogenation experiments by Lawson and Topps 

(10) and lately by Jacobs and Craig (11) yielded two pro­

ducts, a C]_&H]_^N base IV and l-methyl-6-ethylphenanthrene. 

IV 

These two compounds account for all but three carbon atoms 

of atisine and relate the heterocyclic ring of the alka­

loid to the rest of its molecular framework. It was from 

this evidence as well as the similarities in the chemistry 

of atisine and of veatchine which led Wiesner (12) to pro­

pose structure I for atisine. However no rigorous proof 
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had been presented for this structure until the studies of 

Edwards and coworkers (13,14,15). 

Dvornik and Edwards (13,14) have shown that when ati­

sine hydrochloride is boiled with acetic anhydride an ati­

sine diacetate hydrochloride is formed. Liberation of this 

hydrochloride and warming in non-polar solvents permits an 

unusual Hofmann degradation to occur yielding a C-20 azo-

methine acetate Va. Hydration of the exocyclic double bond 

of Vb gave the diol VI which on reduction and acetylation 

yielded VII. Partial hydrolysis and oxidation gave VIII 

which on treatment with trifluoroacetic acid followed by 

OH 

Va R = OCOCH^ 
Vb R = OH J 

VI VII 

OH 

VIII IX X 
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hydrolysis and dichromate oxidation yielded the keto acid 

IX. Dibromination of IX followed by dehydrohalogenat ion 

gave a crystalline phenol X. 

The optical rotation of the phenol X was found to be 

antipodal to that of podocarpic acid (15)- The absolute 

configuration of atisine has recently been determined by 

Djerassi (16,17,18). 

Partial Synthesis of a Degradation Product of Atisine 

ApSimon and Edwards (19,20) reported the partial syn­

thesis of the mirror image of the atisine degradation pro­

duct X via a nitrene intermediate. The azide XIa of 0-

methyl-podocarpic acid (Xlb) was prepared via the acid 

Y Xla R = COKb Y = 

A] 
Xlb R — COpH Y = 

A] XI c R — COpMe Y — 

XI d R — COpH Y = 
XI e R = COgMe Y -
Xlf R — COgH Y = 
xig R = CHpOH Y = 
Xlh R = CHpOH Y r: 

OMe 
OMe 
OH 
OH 
H 
H 
H 
OMe 

chloride and hydrazide. Photolysis of the azide Xla in 

hexane gave a 25$ yield of a mixture of lactams. The S-

lactam predominated but a 5% yield of Y-lactam was also 
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OCH3 

// O 

Ci H 

O 

XII XIII XIV 

produced. Due to the absence of the high-field signal ex­

pected for the angular methyl group (C-10) in the p.ra.r. 

spectrum structure XII was assigned t.q the £-lactam. 

The photolysis of XIII yielded 65$ isocyanate (also 

obtained by refluxing the azide for one hour in hexane), 

25$ ^-lactam, and a trace of y-lactam. The lactam 

XIV was assigned on the basis of a p.ra.r. spectrum. The 

signal for the angular methyl group (C-10) which appeared 

at 58 c.p.s. in the spectrum of the parent and 55 c.p.s. 

in that of the hydrazide was missing from the spectrum of 

the lactam (p.m.r. spectra of carbon tetrachloride solutions 

with tetramethylsilane as internal standard). When the 

azide XV from dihydropimaric acid was irradiated in hexane 

a 26$ yield of the Y-lactam XVI resulted (20). 
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o 

XV XVI 

Iwai, Ogiso and Shimizu (21) have attempted the total 

synthesis of the skeleton of .the atisine series of alkaloids 

by the following novel scheme = 

Formylation of 2-(p-methoxyphenyl) cyclohexanone with 

ethyl formate followed by hydrogénation gave the ketone XVII 

which with methylamine and formaldehyde gave the basic ke­

tone XVIII. The ketone XVIII was reacted with ethoxyethy-

hyllithium to give XIX which was partially hydrogenated to 

give XX. Treatment of the ethoxyvinyl alcohol XX with 

phosphorus tribromide gave the -unsaturated aldehyde 

XXI, which on catalytic reduction on palladium-charcoal gave 

two epimaric saturated aldehydes that could be separated 

by fractional crystallization. Reduction with lithium 

aluminum hydride afforded two epimeric alcohols which upon 

heating with polyphosphoric acid gave the epimeric phenan-

threne derivatives XXII. Evidence for the relative 
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OCH3 OCH 3 OCH 

OH 

XVII XVIII XIX 

OCH OCH 

CHCHO 

XX XXI XXII 

stereochemistry of C-5 was provided by the diagnostic test 

for A-B cis and trans ring juncture by Wenkert and Jackson 

( 2 2 ) .  

Stereochemistry of A-B Ring Juncture 

Wenkert and Jackson (22) found that dehydroabieto-

nitrile (XXIIIa) was deisopropylated under the influence 
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XXIIIa 
XXIIlb 
XXIIIc 
XXIIId 
XXIIIe 
XXIIIf 

R 
R 
R 
R 
R 
R 

CN 
COpMe 
COpH 
CO|Me 
CN 
CH2 OH 

R' 
R' 
R' 
R' 
R' 
R' 

i-Pro 
i-Pro 
i-Pro 
H 
H 
i-Pro 

CN 

XXIVa R = CN XXVa R = CN XXVI 
XXIVb R = COpMe XXVb R = COpMe 
XXIVc R = CHpNHp 
XXIVd R = CHO 

of aluminum chloride in benzene solution. The reaction led 

to a mixture whose major product proved to be XXIVa. Its 

oxidation by chromic acid yielded 26$ ketone XXVa, bl% 

diketone XXVI, an acid, whose structure was shown later by 

Wenkert and Chamberlin (23) to be XXVIIa, and 22$ starting 

material. When under identical oxidizing conditions none 

of the compounds XXIIIa, XXIIIb, XXIIIc, XXIIId, XXVIII, 

and XXIX gave dL-diketone, it appeared that a new method 

for the determination of the stereochemistry of the A-B ring 
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juncture in the 4,^-disubstituted hydrophenanthrenes had 

been uncovered and that the deisopropylation product pos­

sessed an A-B cis ring fusion. 

XXVIIa R = CN XXVIII XXIX 
XXVIlb R = C02Me 

OCOCH 

XXX XXXla Y = OCOCH-3 
XXXlb Y = OH J 

XXXIc Y = 0N0 

The A-B cis stereochemistry of the deisopropylation 

product was demonstrated in the following manner. The com­

pound was converted into an enol acetate XXX which on cata­

lytic hydrogénation gave a 6-acetoxy product XXXla. Mild 
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pyrolysis produced a styrene XXXII which was hydrogenated 

to a dihydro derivative XXXIIla isomeric with XXIIIe. 

XXXII XXXIIIa R = CN 
XXXIIlb R = CHO 
XXXIIle R = CH2NHP 
XXXIIId R = C0oH AAA111U n — V V pil 
XXXIIIe R = CONHNH; 

Study of the minor products of the deisopropylation of 

dehydroabietonitrile (XXIIIa) by Wenkert and Chamberlin (23) 

led to the isolation of XXIIIe, a stereoisomer of XXIVa. 

The minor product was exposed to chromic acid oxidation giv­

ing the 7-keto product, hence indicative of the presence of 

an A-B trans configuration. 

Ohta and Ohmori (24,25) investigated the deisopropyla­

tion of dehydroabietic acid (XXIIIc) and showed that the 

reaction mixture consisted of two acids whose stereochemis­

try corresponded to the nitriles XXIVa and XXXIII. Subse­

quent chromic acid treatment of this mixture gave two ketones 

and one acid corresponding to those found by Wenkert and 
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co-workers (22,23)* Similar results were obtained when 

XXIVb was oxidized with chromic acid yielding XXVb, XXVIIb, 

and XXXIV, 

The structure of the oxidation product of methyl de-

isopyldehydroabietate (XXIIId), previously assumed (24,25) 

to be methyl 5-hydroxy-6,7-diketodeisopropyldehydroabietate 

(XXVIIb) was shown to be a 6,7-diketo compound by its oxi­

dation to XXXV with alkaline hydrogen peroxide in the cold 

(26). Bromination of XXXVI and XXVb gave the 6-bromo 

co%Me 

XXXIV XXXV 

xC02Me xC02Me 

XXXVI XXXVII XXXVIII 
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derivatives which were readily dehydrobrominated to give 

XXXVII and its isomer XXXVIII. During alkaline hydrolysis 

XXXVII and XXXVIII decarboxylated yielding XL and XLI. 

CO-Me 

XL XLI XLI I 

The stereochemical method of Wenkert and Jackson (22) 

has been used frequently (27,28,29,30»31?32). Ghatak and 

co-workers (27,28) were able to differentiate between two 

epimeric synthetic acids, dl-desoxypodocarpic acid and dl-

cis-desoxypodocarpic acid by this method. Compound XLII 

obtained by hydrocyanic acid addition, hydrolysis, and 

esterification of the corresponding <x-/3 unsaturated ketone 

was reacted with methyl magnesium iodide and dehydrated to 

give a complex mixture which was cyclized with polyphosphoric 

acid. Two crystalline acidic products were obtained and 

esterified. Upon oxidation with chromic acid the high-

melting ester gave 50$ methyl dl-7-ketodesoxypodocarpate 

thereby establishing the A-B trans juncture whereas the low 
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melting ester gave a 27$ yield of a yellow crystalline 

diketone ester. The diketo-ester was converted to the enol-

acetate and catalytically hydrogenated to give the same 

high-melting ester thereby establishing the second isomer 

as dl-cis-desoxypodocarpic acid. 

Fetizon and Delobelle (29,30)33,34) report that cycli-

zation of XLIIIa gives XLIIIc and XLIVa as well as cycliza-

tions of XLIIIb gives XLIIId and XLIVb. Oxidation of 64 g. 

XLIIIa Y = OMe XLIIIc Y = OMe XLIVa Y = OMe 
XLIIIb Y = H XLIIId Y = H XLIVb Y = H 

v Y Y 

o- 0 

XLV XLVI 
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of XLIIIc with chromic acid gave 65»5$ monoketone and 6$ 

diketone while 500 rag. of XLIIId gave 56.6$ monoketone. 

Oxidation of XLIIIc gave 5.2$ acidic material and 91$ neu­

tral material which was chromatographed on alumina resulting 

in 23.3$ monoketone. Treatment of the d-isomer of XLIIIc 

with chromic acid gave 11$ acidic material and 48.7$ 

monoketone. 

Oxidation of XLIVb yielded only 16$ diketone. Cataly­

tic reduction of XLV gave XLVI which on Huang-Minion reduc­

tion gave XLIIId while Huang-Minion reduction of XLV followed 

by catalytic reduction yielded XLIVb. Chromic acid oxida­

tion of XLIVb obtained from this series of reductions 

yielded 44.7$ diketone while oxidation of XLIIId yielded 

47.8$ monoketone. 

OMe 

XL VII XLVIII XL IX 

In the cyclization of XLVII with phosphoric oxide 

Barltrop and Day (31) found a mixture of two stereoisomers 
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tricyclic esters, XLVIII and XLIX which were separated by 

chromatography. Reduction of the aromatic ring of XLVIII 

with lithium-bronze afforded compounds La and Lb and on 

esterification gave Lc. 

La R = CHpOH 
Lb R = COgH 
Le R = COgMe 

Lia R = CHpOH 
Lib R = C02Me 

COoMe 

LU LUI 

Similarly, reduction of ester XLIX by lithium-bronze 

gave a hydroxyketone Lia which on chromic acid oxidation 

and esterification yielded Lib. The synthetic keto-ester 

was not identical with the tricyclic keto-ester LII derived 
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from neoabietic acid. Oxidation of XLIX with chromium 

trioxide gave 18$ starting material, 10$ acidic material, 

11$ LIII and the remainder was lost on an alumina column. 

Saha, Ganguly and Dutta (32) applied the diagnostic 

test to ester LIV derived from condensation of ketone LV 

with ethyl cyanoacetate, addition of hydrocyanic acid, hy­

drolysis to the anhydride, formation of a half-ester, 

o 

LIV LV LVI 

esterification to a diester, hydrolysis to a second half-

ester, Hunsdiecker degradation of the resulting sodium salt 

and esterification. The ester obtained was subjected to the 

chromic acid oxidation and a 22$ yield of a yellow diketo-

ester, m.p. 185-187°, was obtained. No other products were 

reported. The configuration at C-4- was also assigned to 

the abietic acid series obtained by Ghatak (27). Therefore 

it was concluded that the above compound was cis-5-iso-

deisopropyldehydroabietic acid. 
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Stereochemistry at C-b 

Wenkert and Jackson (35) proposed in 1958 a diagnostic 

tool, reductive hydrolysis, for differentiating axial from 

equatorial carboxyl groups in rigidly held ring systems. 

When methyl podocarpate (XIc) was exposed to lithium-liquid 

ammonia reduction, the product was mainly podocarpic acid 

(Xld). Likewise methyl desoxypodocarpate (Xle), an axial 

ester, on reductive hydrolysis gave a 77$ yield of the acid 

Xlf and a 23$ yield of alcohol Xlg. Methyl oleanolate 

(LVIIa), a less sterically hindered axial ester yielded 

68$ oleanolic acid (LVIIb) and 28$ erythrodiol (LVIIc). 

However, methyl dehydroabietate (XXIIIb), an equatorial 

ester, afforded 3$ dehydroabietic acid (XXIIIc) and 62$ 

dehydroabietol (XXIIIf). 

HO' 

LVIIa R = COpMe 
LVIIb R = COpH 
LVIIc R = CH|0H 
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Wenkert and Beak (36) have recently described a new 

method for -the determination of the stereochemistry at C-4 

by converting the carboxy group to a primary alcohol and 

noting the differences of chemical shift of the hydroxy­

methyl group in the p.m.r. spectrum. The stereochemistry 

of the hydroxymethyl group was determined by observing that 

an axial group shows its quartet about 2b c.p.s. downfield 

from that of an equatorial group. The axial systems 0-

methylpodocarpol (Xlh) and vouacapenol (LVIIIa) reveal their 

LVIIIa R = CHpOH R' = Me 
LVIIIb R = Me R' = CH-
LVIIIc R = C02Me R' = Me' 
LVIIId R = Me R' = CO. 
LVIIIe R = Me R' = CHl 
LVIIIf R = CHO R' = Me 

R R 

quartets at 221 c.p.s. (J = 11.3 c.p.s.) and 216 c.p.s. 

(J = 10.9 c.p.s.), respectively, while the equatorial com­

pounds dehydroabietol (XXIIIf) and vinhaticol (LVIIIb) show 

four peaks centered at 197 c.p.s. (J = 10.4 c.p.s.) and 

195 c.p.s. (J = 10.2 c.p.s.), respectively. On this basis 

hydroxytotarol with its AB quartet centered at 220 c.p.s. 

(J = 10.9 c.p.s.) was assigned an axial hydroxymethyl group. 

However, this method is limited to compounds possessing no 
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other hydrogens which would yield signals in the hydroxy­

methyl region. In some cases inspection of the spectra of 

the carbinol acetates proved useful due to the appreciable 

downfield shift (37) of their methylene quartets as found 

in dehydroabietyl acetate, 230 c.p.s. (J = 10.5 c.p.s.) and 

O-methylpodocarpyl acetate, 250 c.p.s. (J = 11.3 c.p.s.). 

The absolute configuration of hydroxytotarol was also 

determined by Gambie and Mander (38) by comparing the hy­

droxymethyl 0-0 stretching vibration of hydroxytotarol 

(9-68/4.) with those observed in compounds of the podocarpol 

series (9.66-9.68/1) which show a frequency shift from that 

in the abietol series (9.50/0. 

King, Godson and King (39) report a difference of the 

rate of hydrolysis of axial and equatorial esters. Hydroly­

sis in 0.5 N ethanolic potassium hydroxide of methyl podo­

carpate (XIc) for 2 hours gave no acid, of methyl vouacape-

nate (LVIIIc) for 4.5 hours gave 1.3$ acid, of methyl abie-

tate (XXIIIb) for 2.25 hours gave 40.9$ acid and of methyl 

vinhaticoate (LVIIId) for 2.25 hours gave 64.6$ (calculated 

from ester numbers). 

Hydrolysis of the ester XLVIII and XLIX was very dif­

ficult but comparative experiments (31) showed that ester 

XLVIII contained an ester group apprecially more hindered 

than that of ester XLIX. When heated with a 30$ solution of 
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potassium hydroxide in slightly aqueous ethylene glycol 

at 150° for 5 hours, ester XLVIII and XLIX gave 35% and 

87$ yields, respectively, of the corresponding acids. 

Sherwood and Short (40) found that methyl 0-methylpodo-

carpate was very resistant to hydrolysis and was unaffected 

by boiling 0.5 N alcoholic potassium hydroxide. But with 

excess of concentrated aqueous alcoholic potassium hydroxide 

at 150° for 4 hours almost complete hydrolysis was obtained. 

In the structure study of bassic acid T. J. King and 

J. P. Yardley (41) found that the p.m.r. spectrum of the 

aldehyde of methyl dehydroisopropylidenebassate showed a 

singlet peak at 538 c.p.s., an unusually low value for an 

aldehyde (normal ça. 579 c.p.s.). They also indicated that 

this low value has stereochemical implications because the 

chemical shift for the aldehyde proton of the fully substi­

tuted equatorial aldehyde vinhatical (LVIIIe) (42) and its 

axial epimer vouacapenal (LVIIIf) (39) are 554 c.p.s. and 

586 c.p.s., respectively. 

HO, 

LIX 
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DISCUSSION 

As a part of a series of reactions which were to trans­

form dehydroabietonitrile (XXIIIa) into atisine (I), a 

naturally occurring diterpenoid alkaloid, a two-phase pro­

gram was initiated. The key step to both schemes was that 

of irratiating an acid azide and a nitrite in order to form 

the E ring of the natural product. 

The method of Wenkert and Jackson (22) was used to pre­

pare desoxypodocarponitrile enantiomer (XXXIIIa), its oxida­

tion product, 6,7-diketodesoxypodocarponitrile enantiomer 

(XXVI), and the latter1 s enol acetate XXX. Wenkert and 

Tahara (43) found that when large excess of palladium-on-

carbon was used to reduce the enol acetate XXX a proportion 

of products different from that observed previously was 

obtained (22). Upon hydrogénation using a large excess of 

catalyst a yield of ^k% desoxypodocarponitrile enantiomer 

(XXXIIIa) and 12$ 6-acetoxydesoxypodocarponitrile enantiomer 

(XXXI) was obtained. Lithium aluminum hydride reduction 

of desoxypodocarponitrile (XXXIIIa) using only three-fourths 

of a mole of hydride and refluxing for one hour in tetra-

hydrofuran, followed by hydrolysis with 10% hydrochloric 

acid, yielded 90.5% desoxypodocarpal enantiomer (XXXIIIb) 

and 8.5$ desoxypodocarpyl amine enantiomer (XXXIIIc). Oxi­

dation of the aldehyde with alkaline hydrogen peroxide 
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yielded only 20$ acid XXXIIId, but upon potassium permanga­

nate oxidation a 94$ yield resulted. Desoxypodocarpic acid 

hydrazide enantiomer (XXXIIIe) was prepared by the formation 

of the corresponding acid chloride and treatment with 95$ 

hydrazine hydrate dissolved in ethanol. The crystalline 

hydrazide could be purified easily by crystallization or 

sublimation. The photolysis was carried out on the azide, 

formed by nitrous acid treatment of the hydrazide in acetic 

acid followed by extraction into hexane, in the dried hexane 

solution by exposure to a Hanovia high pressure mercury 

arc lamp for one hour. The residue obtained after evapo­

ration could be chromâtographed on alumina to yield three 

compounds. One product gave an infrared absorption spectrum 

band at 4.40yu characteristic of isocyanates. Absorption 

at 5* 94a in the spectrum of the second compound indicated 

it to be a Y-lactam. The third compound gave a band at 

6.O^a- characteristic of a ^-lactam. While other pressing 

work did not permit complete characterization of these pro­

ducts, the results were compatible with those of ApSimon 

and Edwards (44-,45) in their work on podocarpic acid (Xld) 

(see Historical section). 

Another approach to the problem of ring-E formation 

lay in the possible use of the Barton reaction (46). Alka­

line hydrolysis of 6- d-acetoxydesoxypodocarponitrile 
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enantiomer (XXXIa) in ethanol gave good yields of 6- oC-

hydroxydesoxypodocarponitrile enantiomer (XXXIb). This 

hydroxy-nitrile could be nitrosated with nitrosyl chloride 

in pyridine to give the crystalline 6- «(.-nitrite XXXIc. 

Photolysis of this compound in dry benzene using a pyrex 

filter sleeve at 20° for a period of one hour gave a resi­

due, after evaporation, which was refluxed with acetic an­

hydride. Chromatography of the products on acidic (pH 4-5) 

alumina, activity I, yielded 6-*-acetoxypodocarponitrile 

enantiomer (XXXIa)= No other products were identified. 

Results obtained by Wenkert and Bredenberg (47) upon pho­

tolysis of LX indicate that the photolysis does follow the 

LX 

alkoxy radical rearrangement mechanism the Barton reaction 

(46) to some extent giving a low yield of desired hydroxy 

aldoxime. The low yields of the Barton reaction in these 

two cases may be attributable to the presence of the 
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neighboring benzylic methylene group. However, despite the 

extensive study of the Barton reaction by Kabasahalian and 

co-workers (48,49,50,51)52) no example of hydrogen migration 

between vicinal carbon atoms exists at this time. 

In connection with another study it became necessary 

to transform dehydroabietonitrile into variously substituted 

C-13 derivatives of deisopropyldehydroabietane. This was 

accomplished by lithium aluminum hydride reduction of de­

hydroabietonitrile (XXIIIa) to the imine followed by hydrol­

ysis to the aldehyde which gave upon Huang-Minion (53) re­

duction dehydroabietane. Chromic acid oxidation (54) gave 

two products, 7-keto-13-acetyldeisopropyldehydroabietane 

(LXI) and 7-keto-5-acetoxydehydroabietane (LXII). Huang-

Minion reduction of LXII yielded LXIII. While attempted 

dehydration of LXIII with phosphorous pentoxide in hexane 

(55) was poor, the use of phosphorous oxychloride in pyri­

dine which gave up to 40$ yield of olefin. Following the 

occH oH 

LXI LXII LXIII 
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method of Ohta (56), I was treated with iodine in anhydrous 

pyridine and thereupon hydrolyzed with alkali. The result­

ing acid LXIVa was esterified to LXIVb. Huang-Minion reduc­

tion of the keto-acid LXIVa gave LXVa, which on esterifica-

tion yielded LXVb. Treatment of LXVb with excess methyl-

magnesium iodide (57) gave LXIII which was identical in all 

respects with the compound formed from Huang-Minion reduc­

tion of LXII. 

LXVa R = C02H 
LXVb R = C02Me 

The conversion of nitriles to aldehydes is a synthetic 

route of considerable importance (58). Brown et al. (59) 

have been able to convert nitriles to aldehydes by a variety 

of different lithium alumino-hydrides. Lithium aluminum 

hydride reduction of steroidal cyano-derivatives has been 

reported by Nagata (60). 

Reduction of LXVIa with excess lithium aluminum hydride 

has been reported to give only the aldehyde LXVIb. However, 

LXIVa R = COpH 
LXIVb R = COoMi 
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CH z tJ  Hj 

FCF 

LXVIa R = CN LXVIIa R 
LXVIb R = CHO LXVIIb R 

LXVIIc R 

CN 
CHO 
CH2NH2 

LXVIII 

with the corresponding diethylketal LXVIIa both the aldehyde 

LXVIIb and amine LXVIIc were produced. The difference of 

results was attributed to a difference in the stability 

of the presumed intermediate imino-aluminum-ketal complexes 

in the two cases. 

Reduction of LXIXa in tetrahydrofuran at 0° for 3° 

minutes and 25° for 3 hours using o.56 moles of lithium 

aluminum hydride gave, after exposure to 2N sodium hydroxide 

for 5 minutes, aldehyde LXIXb, amine LXIXc, and the 

"dimeric" imino LXX. 

Table I. Percentage of Products from Lithium 
Aluminum Hydride Reductions 
of Diterpenoid Nitriles 

XXXIIIa XXI Va XXIIIa 

aldehyde 90.5 45.6 43.2 

amine 8.5 47.8 52.2 
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CH 
II 

0> 

LXIXa R = CN 
LXIXb R = CHO 
LXIXc R = CH2NH2 LXX 

Reduction of desoxypodocarponitrile enantiomer XXX 

(XXXIIIa) with 0.74 moles of lithium aluminum hydride in 

tetrahydrofuran gives 90.5% of the aldehyde XXXIIlb and 

only 8.5/6 amine XXXIIIc, whereas almost equal amounts of 

aldehyde and amine are produced in the case of XXIVa and 

XXIIIa (see Table I). However, when XXIVa is reduced with 

lithium aluminum hydride in ether followed by mild hydroly­

sis only a "dimeric" imine was obtained which could be 

hydrolysed under more stringent conditions to the amine 

XXIVc and aldehyde XXIVd (110). 

In connection with another study we needed to prepare 

both LXXIa and LXXIb. Podocarpic acid was desoxygenated 

and then oxidized by chromic acid (22) to methyl 7-keto-

desoxypodocarpate (LXXIII). Selenium dioxide oxidation 
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of this material gave almost quantitative yield of the 

enone ester LXXIb. Hydrolysis of LXXIb with ethanolic 

potassium, hydroxide (25) resulted in poor yields. However, 

on treatment with anhydrous lithium iodide in refluxing 

collidine (61) a quantitative yield of the decarboxylated 

compound LXXIa was obtained. 

Compound LXXIIa was prepared by first preparing LXXIIIa 

by aluminum chloride treatment of dehydroabietonitrile (22) 

followed by chromic acid oxidation (22,24). Preparation 

CqMe 

LXXIa R = H 
LXXIb R = C02Me 

LXXIIa R = H 
LXXIIb R = COpMe 
LXXIIc R = CN 

LXXIII 

R 

LXXIIIa R = CN 
LXXIIIb R = C02Me 



www.manaraa.com

30 

of LXXIIc by selenium dioxide oxidation of LXXIIIa gave 

only about 40> of the desired enone nitrile LXXIIc along 

with 2^% 6,7-diketone. Since hydrolysis and decarboxylation 

of LXXIIc could not be accomplished, a more desirable path­

way was followed. 

Methyl 7-keto-5-isodesoxypodocarpate enantiomer 

(LXXIIIb) could be obtained by hydrolysis, esterification 

and chromic acid oxidation (24) of 5-isodesoxypodocarpo-

n'itrile enantiomer (XXIVa). Upon treatment of LXXIIIb with 

excess selenium dioxide in both refluxing acetic acid or 

refluxing nitrobenzene over a 16-hour period failed to give 

any <*-/? unsaturated keto ester LXXIIb. Therefore, LXXIIIb 

was brominated and dehydrobrominated to yield LXXIIb (25)• 

Treatment of LXXIIb as before with anhydrous lithium iodide 

in refluxing collidine yielded the desired decarboxylated 

material LXXIIa. 

For another study, to be discussed presently, it was 

necessary to prepare several other derivatives of the A-B 

cis-podocarpic acid enantiomer system. Lithium aluminum 

hydride reduction of LXXIVa yielded both LXXIVb and LXXIVc. 

Huang-Minion reduction of LXXIVb gave LXXIVd in 75% yield. 

Reduction of LXXIVf with lithium aluminum hydride in tetra-

hydrofuran gave crystalline LXXIVe which on acetylation gave 

LXXIVg. Chromic acid oxidation of LXXIVg in acetic anhy­

dride (25) yielded LXXV. 
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'CH20CCH3 R 

LXXIVa R = CN LXXV 
LXXIVb R = CHO 
LXXIVc R = CHpNHp 
LXXIVd R = CH-2 
LXXIVe R = CHgOH 
LXXIVf R = C02Me 
LXXIVg R = CH2OCOCH3 

In an earlier study (62) an unusual «(.-oxidation was 

reported. Upon exposure of methyl 7-ketodehydroabietate 

(LXXVI) to t-butyl hydroperoxide in the presence of a trace 

of sulfuric acid in acetic acid for 55 hours at 50-55° a 

keto-lactone LXXVII had been formed identical with the keto-

lactone formed by selenium dioxide oxidation of methyl 

o 

LXXVI LXXVII LXXVIII 
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LXXIX LXXX LXXXIa 
LXXXlb 
LXXXIc 

R = COoH 
R = COpMe 
R = CH20H 

7-ketodehydroabietate (63). Sodium borohydride reduction 

had led to a hydroxylactone LXXIX, whose oxidation with 

chromic acid had yielded a keto-lactone LXXX different from 

LXXVII but easily convertible into the latter by selenium 

dioxide oxidation. 

Methyl 7-ketodehydroabietate (LXXVI) had been bromi-

nated and the 6-bromo compound exposed to solvolysis. 

Collidine treatment of the latter, in a manner in which a 

6-bromo-7-ketopodocarpic acid derivative has been reported 

to have been converted into C-6 lactone (64), had yielded 

only the elimination product LXXX. However, dimethyl sul­

foxide treatment (65) of the 6-bromo compound had yielded 

the enol-lactone LXXVII. 

Although the structure of the enol-lactone LXXVII was 

well established the stereochemistry at C-5 and C-6 of 
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LXXVIII and LXXIX had not been determined. Upon Clemmenson 

reduction (66) of LXXIX a crystalline acid LXXXIa, m.p. 

121-124°, was obtained. Esterification yielded the ester 

LXXXIb, m.p. 98-100°. The acid was 5-isoabietic acid, a 

structure assignment confirmed later by a p.m.r. study of 

a large group of diterpenic acid derivatives. 

When a private communication from Mahapatra and Dodson 

(67) indicated that a dl-deisopropyl analogue of LXXVII had 

been converted to dl-5-isodeisopropyldehydroabietlc acid on 

catalytic hydrogénation, the same reduction of LXXVII, pre­

viously claimed to have led to dehydroabietic acid (XXIIIc) 

itself (62), was reinvestigated. This time the reaction led 

to 5-isodehydroabietic acid (LXXXIa), identical in all re­

spects with the product of the Clemmensen reduction of 

LXXIX. In view of this new turn of events it became desir­

able to determine the C-6 stereochemistry of LXXIX, and to 

reconsider the possible mechanism of the hydrogénation of 

the enol-keto-lactone LXXVII. 

The p.m.r. spectrum of LXXIX was taken and found to 

possess a pair of doublets corresponding to the C-5 and C-6 

hydrogens. The C-6 doublet was centered at 341 c.p.s. 

(J = 13 c.p.s.) while that of C-5 at 304 c.p.s. (J = 13 

c.p.s.) (relative to an internal tetramethylsilane standard) 

The C-4 and C-10 methyl peaks coalesced at 90 c.p.s. while 
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the doublet of the isopropyl methyl groups was centered at 

75*5 c.p.s. (J =7 c.p.s.). 

Inspection of models of the two possible C-6 epimers 

of LXXIX revealed them both to be rigid and quite inflexi­

ble. The dihedral angle made by C-5, C-6 and their single 

hydrogen atoms proved to be close to 0° in the cis case 

and close to l80° in the trans case. On the basis of the 

correlations of spin-spin coupling constants with dihedral 

angles by Karplus (68) and later Johnson (69), the J value 

in the former isomer would be expected to be less than 

10 c.p.s., while that of the latter can approach 16 c.p.s. 

The observed coupling constant of 13 c.p.s. suggests a 

C-5-/3 , C-6- (X. trans configuration for the ketolactone 

LXXIX. Since there is little likelihood that C-6 isomeri-

zation had occurred during the oxidation of LXXVIII to 

LXXIX, the hydroxylactone LXXVIII probably has a similar 

C-5, C-6 stereochemical arrangement. Unfortunately a p.m.r. 

spectral check on this point was not possible because of the 

overlap of another proton signal from either the hydroxy! 

group or the C-7 hydrogen in the region (293-312 c.p.s.) 

of the C-6 hydrogen signal. 

The hydrogénation of the enol-keto-lactone LXXVII is 

open to two formal mechanistic interpretations. One, path 

a, involves hydrogenolysis at C-6 followed by y6 -side 
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hydrogénation. This pathway is open to objections. The 

reduction of the enone ester LXXX gave only the A-B trans 

compound, methyl dehydroabietate (XXIIIb). However the 

effect of the difference of a C-b carboxyl vs. its ester 

on the course of hydrogénation is not known. All analogous 

cases of octalones have given only trans decalins on 

hydrogénation. 

Path b involves hydrogénation of the double bond 

from the ft side followed by hydrogenolysis at C-6 and nor­

mal reduction thereafter. As a possible test of this route, 
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keto-lactone LXXIX vas hydrogenated. While the product was 

not fully characterized, it proved to be neutral and its 

infrared spectrum (carbonyl band at 5*6^a) showed it to 

be a Y-lactone, presumably LXXXII. Although this experi­

mental would appear to speak against path b as the route 

of hydrogénation of LXXVII, the test lactone LXXIX is a C-6 

epimer of the hypothetical hydrogénation intermediate—a 

fact which may be important enough to change the course of 

reduction. 

LXXXII 

All reactions of the enol-keto-lactone LXXVII involving 

the introduction of asymmetry into C-5 appear to occur from 

the fi side. The hydrogénation (path b) may be one case, 

while other examples included the following. When during 

the preparation of more lactone LXXVII the temperature was 

allowed to increase after a period of time at 50-55°? a new 

product accompanied the desired lactone. Its infrared 
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spectrum (Nujol), C = 0 5'55 (s), 5-89 (s)/<_ ; C = C 6.20 

(s)yu. ; ultraviolet spectrum (95% ethanol) ; ^ max. 212, 260, 

312 mjm. , and elemental analysis showed it to he a 5,6-epoxy-

lactone LXXXIII. Of the two possible configurations only 

the stereochemistry as depicted in LXXXIII seems sterically 

reasonable. 

The reduction of LXXVII with zinc and acetic acid gave 

5-iso-7-ketodehydroabietic acid (LXXXIVa) which on esteri-

fication yielded methyl 5-iso-7-ketodehydroabietate 

(LXXXIVb) identical with that obtained from chromic acid 

oxidation of methyl 5-isodehydroabietate (LXXXIb). This 

would indicate that chemical reduction as well as possibly 

hydrogénation occurs from the j2> side. 

The p.m.r. spectrum of LXXVII exhibits a multiplet 

at 4-90 c.p.s. due to the C-14 hydrogen, a doublet centered 

0 

LXXXIII LXXXIVa R = C02H 
LXXXIVb R = C02Me 
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at 4-52 c.p.s. (J = 0.8 c.p.s. due to the C-ll and C-12 

hydrogens), seven peaks of the expected septet for the 

isopropyl methine hydrogen centered at 182 c.p.s. (J = 

7 c.p.s.), a 100 c.p.s. C-10 methyl peak, a 98 c.p.s. C-4-

methyl peak (or vice versa) and a doublet centered at 77*5 

c.p.s. (J = 7 c.p.s.) of the isopropyl methyl groups. 

The paramagnetic shift of the C-4- and C-10 methyl 

groups as compared to lactone LXXIX is due to the fact 

that the methyl groups are within the deshielding region 

of the C-5? C-6 double bond. It is noteworthy that the 

enone ester LXXX has one of its methyl groups (99 and 93 

c.p.s.) more shielded than the rigid system LXXVII. 

It is also interesting to note that the epoxy-keto-

lactone LXXXIII has its methyl groups (95 and 102 c.p.s.) 

less shielded than its desoxy counterpart, LXXIX (90 and 

90 c.p.s.). 

The C-Î4- hydrogen in LXXXIII shows a doublet centered 

at 4-73 c.p.s. (J = 2 c.p.s.), the C-ll and C-12 hydrogens 

show a multiplet centered at 4-4-5 c.p.s., while the doublet 

for the isopropyl methyl groups is at 75»5 c.p.s. (J = 7 

c.p.s.). 

The C-10 and C-4- methyl peaks of LXXVIII appear at 8l 

c.p.s. and 65 c.p.s., respectively, while the doublet of the 

isopropyl methyl groups shows up at 73»5 c.p.s. (J = 7 

c.p.s.). 
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The chromic acid oxidation (22) of methyl 5-isodehydro-

abietate (LXXXIb) gives predominately monoketone. Chromato­

graphy of the crude product led to 93% of methyl 5-iso-7-

ketodehydroabietate, some material, presumably diketone, 

stuck to the column and a trace of acidic material was ob­

tained. When methyl 5-isodehydroabietate (LXXXIb) is re­

duced with lithium aluminum hydride to the alcohol LXXXIc, 

acetylated with acetic anhydride and then oxidized with 

chromic acid a 55:45 ratio of diketone to monoketone was 

obtained. 

In reviewing the previous work (see Historical section) 

one finds that the correlation in results and hence the use 

of the diagnostic test first proposed by Wenkert and Jackson 

(22) are difficult. It appears that the work of Ghatak 

et al. (27,28) and Fétizon et al. (29) fit the original 

diagnostic test, but yields of similar cis as well as trans 

compounds vary as much as "$0%. In the case of Barltrop and 

Day (31) a cis material has been assigned on the basis of 

obtaining an "appreciable amount of acidic material". Dutta 

et al. (32) report the oxidation of methyl dl-5-isodeiso-

propyldehydroabietate with chromic acid and obtain a low 

yield (22#) of diketone. 

It appears from these observations that the variation 

of results in the chromic acid oxidation are due to the 

differences in reaction conditions. 
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Various chemical means have been cited (see Historical 

section) for the determination of the stereochemistry of 

the A-B ring juncture as well as the stereochemistry at C-4 

of diterpenic compounds. Recent advances in the correlation 

of stereochemistry and nuclear magnetic resonance spectra 

for diterpenoid substances (36,70,71,72,73,74) have also 

occurred. 

It was first noted by Beak (75) that in comparing the 

proton magnetic resonance spectra of O-methylpodocarpol and 

cis desoxypodocarpol, the C-4 methyl shifted from 63 c.p.s. 

to 19 c.p.s., whilè that of the C-10 methyl remained con­

stant at 71 c.p.s. This has led us to examine the proton 

magnetic resonance spectra of both ring A-B cis as well as 

ring A-B trans derivatives of aromatic resin acids in the 

hope of obtaining an overall correlation of configuration 

and conformation of these substances. 

The initial correlations between the chemical shifts 

of methyl groups and structure were made in the steroid 

field (76,77,78,79,80) and extrapolated to the diterpenes 

(70,71). It was noted that the assignment of the highest 

field methyl group absorption in xanthoperol (LXXXV) to 

the C-10 methyl (70) disregarded the magnetic moment of 

the adjacent benzene ring (81). 

On the basis of the work of Chien (82), Beak (75) and 

that to be presented herein indicates that a paramagnetic 
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OH 

LXXXV 

shift of approximately 21 c.p.s. would be expected for a 

c-10-methyl group relative to a system wherein ring C is 

hydroaromatic. Therefore the reassignment of peaks in the 

xanthoperol spectrum was made so that the highest field 

absorption be assigned to one of the C-4 methyl groups 

(75). 

The chemical shifts of four series of aromatic diter-

penes are listed in Table II and III. On the basis of 

these models correlations applicable to rigid six-membered 

carbocyclic rings can be made. 

If one considers dehydroabietic acid (see Table I, 

structure LXXXVIa) the assignment of the C-4 and C-10 methyl 

groups at 73 c.p.s. and 77 c.p.s., respectively, can be 

made. The C-ll, C-12 and C-l4 aromatic complex appears 

between 417 and 431 c.p.s. while the five peaks of the 
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expected septet for the isopropyl raethine hydrogen is cen­

tered at 173 c.p.s. (J = 7 c.p.s.). A doublet, centered 

at 73.5 c.p.s. (J =7 c.p.s.), is characteristic of the 

isopropyl methyl groups and is found to remain constant 

and independent of the nature of the C-4 substituents and 

the C-5 stereochemistry. 

Since dehydroabietic acid possesses the trans A-B 

ring juncture the conformation can be depicted as XC where 

R is equal to CC^H. Since the carboxyl is equatorial no 

effect would be expected at C-10 due to the conical region 

associated with the carbonyl (37). Upon examination of the 

C-10 methyl peak when varying R from acid to ester, alde­

hyde, nitrile, aminomethyl, hydroxymethyl, acetoxymethyl 

and methyl, one finds a range of 7 c.p.s. from 70 to 77 

c.p.s. 

Since the R group is attached to a carbon holding one 

methyl and two methylene groups, one might expect that a 

good model for the determination of the methyl position 

would be the neopenyl system (see Table III). 

Determination of the p.m.r. spectra of these neopenyl 

models revealed (see Table III) the methyl peaks to occur 

within i" 1 c.p.s. of those of the dehydroabietic acid deri­

vatives LXXXVIa-h. This further substantiates the previous 

assignments of C-4 and C-10 methyl groups. 



www.manaraa.com

^3 

LXXXVI LXXXVII LXXXVIII LXXXIX 

Table II. Chemical Shifts of C-4 and C-10 
Methyl Groups in c.p.s. 

R = 

a 

CO2H 
C-4 C-10 C-4 

b 

C02Me 
C-10 ester C-4 

c 

CHO 
C-10 CHO 

d 

CN Y 
C-4 C-10 

LXXXVI 72 77 73 77 221 70 74 557 84 70 
LXXXVII 89 90 83 83 204 76 73 
LXXXVIII 80 67 77 63 221 67 64 595 86 83 H 

80 62 77 63 OMe 
81 68 77 61 OH 

LXXXIX 79 67 73 64 222 73 51 574 95 76 

e f g h 

R = CH2NH2 CH20H CH2OAC CHo Y 
C-4 C-10 C-4 C-10 C-4 C-10 C-4 C-4 C-10 

LXXXVI 53 73 52 73 57 73 57 57 71 
LXXXVII 62 72 60 73 
LXXXVIII 60 72 63 71 57 57 71 H 

62 70 63 72 57 57 71 OMe 
63 71 OH 

LXXXIX 20 71 19 71 24 72 19 54 69 
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Table III. Chemical Shifts of Methylene 
Quartets in c.p.s. 

CHpNH2 CH2OH CH20Ac OAc 

LXXXVI 150 (J=4) 199 (J=H) 223 (J=ll) 122 
LXXXVII 179 (J=U) 202 (J=ll) 115 
LXXXVIII 222 (Jrll) 250 (J=ll) 123 
LXXXIX 152 (J=13) 200 (J=ll) 233 (J=ll) 125 

Table IV. Chemical Shifts 
of Neopental Derivations 

CQ?H C02Me CHO CN CH2NH2 CH2NH2 

Me Mm OMe Ma He Ha CH2 Me CHp 
Me3CR 74 72 221 69 83 53 lW) 53 198ts) 

XCI 

XCIIa XCI lb 

XCIIIa XCIIIb 
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Further data may be obtained from the p.m.r. spectra, 

as shown in the tables II and III such as the position of 

the equatorial carbomethoxy group at 221 c.p.s., the alde­

hyde hydrogen singlet at 557 c.p.s., the quartet of the 

aminomethylene centered at 150 c.p.s. (J = 4 c.p.s.), the 

quartet of the hydroxymethylene centered at 199 c.p.s. 

(J = 11 c.p.s.), the quartet of the acetoxymethylene cen­

tered at 233 c.p.s. (J = 11 c.p.s.) as well as the acetate 

methyl which gives a singlet at 122 c.p.s. 

It has been noted (37) that acyloxy and hydroxy sub­

stituent s produce large shifts in adjacuent hydrogens while 

that of the corresponding nitrogen analogue causes, much 

smaller paramagnetic shifts. This indeed is observed in 

the above methylene cases. 

It would be expected that the aminomethyl, hydroxy-

methyl, acetoxymethyl and methyl groups would have very 

little deshielding effect on the geminal methyl group. 

Such is the case, the methyl peak appearing at approxi­

mately 51* c.p.s. 

Therefore, one observes a methyl group on the same 

carbon as a hydroxymethyl, aminomethyl, acetoxymethyl or 

methyl to undergo a paramagnetic shift of approximately 

18 t 2 c.p.s. when the hydroxymethyl group is transformed 

into a carbomethoxy, carboxy, or aldehyde function. An 
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even greater paramagnetic effect is observed in the case 

of the nitrile geminal methyl which is shifted 30 c.p.s. 

downfield. These apparent shifts are due to the deshield­

ing effect of the freely rotating carbonyl on the one hand 

and the inherent deshielding of the nitrile. 

If one now looks at the 5-isodehydroabietic acid series 

represented by LXXXVII, one's attention is drawn to the 

diamagnetic shift of 17 c.p.s. of the carbomethoxy group. 

Also a diamagnetic shift of 20 c.p.s. is noted in the quar­

tet of the hydroxymethyl, a 31 c.p.s. shift in the quartet 

of the acetoxymethyl, as well as a 7 c.p.s. shift in the 

acetate's methyl peak. 

In the examination of the two conformational struc­

tures, XCIla and XCIIb, one notes that in XCIIa the axial 

functional group R overlaps with the TT*-electrons of the 

aromatic ring while in XCIIb the equatorial R is far re­

moved from the ring. 

Therefore, one would expect that if the functional 

group is associated with the region of positive shielding 

above or below the plane of the aromatic ring a diamagnetic 

shift should be observed. It is then possible to designate 

XCIIa as the conformation of LXXXVIIb, LXXXVIIf and LXXVIIg. 

Analoguously LXXXVIIa and LXXXVIId possess the XCIIa 

conformation. 
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In the podocarpic acid series LXXXVI1I one must consi­

der the 1,3 diaxial interactions of the substituent R and 

the angular methyl group (see XCI)« If one assumes the 

abietic acid series (LXXXVI) to be the standard, the 1,3 

diaxial interaction can now be calculated to be a diamag-

netic shift of approximately 10 c.p.s, in those cases where 

the R substituents are carboxyl, carbomethoxy or aldehyde 

groups. This diamagnetic shift can be assumed to be due 

to the carbonyl oriented in such a way so as to place the 

C-10 methyl in the conical region associated with positive 

shielding above or below the plane of the carbon-oxygen 

double bond. The diamagnetic shift of the 1,3 diaxial ni-

trile and C-10 methyl seems to follow this pattern, however, 

a greater shift is observed. In the tetrahedral substitu­

ent s (LXXXVIIIe-h) there is no 1,3 diaxial field interaction 

and one would expect no shift in the angular methyl group. 

The latter indeed is observed not to vary more than ± 1 

c.p.s. from the standard dehydroabietic acid series. One 

might expect some variation in the chemical shift of the 

C-4 methyl group in the axial and equatorial cases. How­

ever, no uniform shifts occur, but all peaks are within 7 

c.p.s. of each other. In the podocarpic acid series there 

seems to be no effect on the angular methyl group by C-12 

aromatic substituents such as hydroxy or methoxyl groups. 
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If one now turns to the fourth series, the cis podo­

carpic acid enantiomer series (LXXXIXa-h) the diamagnetic 

shift of the C-4 methyl in the tetrahedrally substituted 

derivatives is noted (LXXXIXc-h). This observation is the 

same as that in the cis abietic acid series LXXXVII where 

an axial substituent overlapped with the magnetic field 

of the aromatic ring causing a diamagnetic shift of the 

hydrogen signal. In the case at hand, when one looks at the 

two conformations possible (XCIIIa-b), the C-4 methyl group 

can be axial and overlapping with the aromatic ring or 

equatorial without any overlapping. The data indicates 

that conformation XCIIIa is favored when the substituent 

at C-4 is tetrahedral. 

In those cases where the substituent R is linear or 

trigonal the C-4 and C-10 methyl group peaks appear to be 

anomalous. A clue of the conformation of these compounds 

can be gained from the chemical shift of the aldehyde hydro­

gen atom. Dehydroabietal (LXXXVIc) exhibits its equatorial 

aldehyde hydrogen at 557 c.p.s. as a singlet while the axial 

aldehyde hydrogen of podocarpal (LXXXVIIIc) appears as a 

doublet at 595 c.p.s. (J = 1 c.p.s.). King, Godson and 

King (39) have observed p.m.r. signals of axial aldehyde 

hydrogens at 486 c.p.s. and of equatorial hydrogens at 554 

c.p.s. among non-aromatic diterpenoids. Meyer (83) has 
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observed that axial aldehydes have their hydrogen signals 

as doublets. The aldehyde hydrogen of cis podocarpal enan­

tiomer appeared as a doublet at 574 c.p.s. (J - 1 c.p.s.), 

hence midway between the axial or equatorial cases. However 

the fact that the methyl signals (51 and 73 c.p.s.) of the 

A-B cis aldehyde fit neither conformations, XCIIIa or 

XCIIIb, implies that ring A is distorted from its normal 

chain conformation. This trend toward a boat form must 

be different in the aldehyde than in the acid (67 and 79 

c.p.s.), ester (64 and 73 c.p.s.) and nitrile (76 and 95 

c.p.s.) of similar configuration. Presumably the size of 

the C-4 substituent has a strong effect on the ring A con­

formation of these compounds. It is interesting to note 

that the effect of the magnetic current around a nitrile 

group on neighboring hydrogen atoms is similar to that dis­

cussed by Jackman (37) regarding the long-range shielding 

affect of the carbon-carbon triple bond XCIV. 

As indicated above, no variation in the chemical shift 

of the isopropyl doublet in the dehydroabietic systems nor 

any in the C-10 methyl signals of variously ar-substituted 

podocarpic acid derivatives LXXXVIIIa-h was observed. 

However, the p.m.r. spectra of C-13 hydroxylated compounds 

revealed a paramagnetic shift of the C-10 methyl signals 

(Compare XCV, XCVI and XCVII). 
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In every compound (XCVIII, XCIX, C and CI) possessing 

an acetoxy group ortho to the isopropyl function two pairs 

of doublets are observed for the isopropyl methyl groups. 

Most likely this splitting is a consequence of the restric­

tion of rotation of the isopropyl group by the acetoxy 

function. 

In order to pursue the conformation of the four series 

further it became desirable to observe the p.m.r. spectra 

of C-7 oxygenated aromatic diterpenoids. Insight could 

also be obtained by the determination of their optical 

rotatory dispersion (see Figure 18, 19, 20). 

While the introduction of a planar carbonyl group at 

C-7 (as in CII, CIII, CIV, CV, CVI, and CVII) has no effect 

on the C-10 methyl group, it causes a downfield drift of 

up to 9 c.p.s. in the chemical shift of the axial C-4 

methyl function. As the 7-oxygenated podocarpic acid sys­

tems (CVIII, CIX, CX, CXI) indicate, the equatorial C-4 

methyl group remains unaffected. The effect of the C-7 

carbonyl group on the axial C-4 methyl function probably 

is a consequence of the change of the electronic environ­

ment of the axial y3 -hydrogen at C-6 with which the methyl 

group is interacting in an unfavorable 1,3-diaxial fashion. 

Upon comparing the 7-keto derivatives CXII and CXIII 

in the 5-isodehydroabietic acid series with the parent 
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ça 
4V 

114" 

CXI CXII CXIII 

5-isononoxygenated derivatives (LXXXVIIb and LXXXVIIc) one 

notes no appreciable shift in the C-4 and C-10 methyl groups 

and only a small shift in the doublet of the isopropyl me­

thyl groups. However, the large diamagnetic shift of 26 

c.p.s. of the methyl group of the ester in CXII and of 9 

c.p.s. of the methylene quartet of the acetoxymethyl group 

in CXIII speak in favor of conformation XCIIa for these 

substances wherein the C-4 axial substituents overlap the 

aromatic ring and hence are shielded by it. 

,83 
!80 

CXIV CXV CXVI 
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It appears by comparing CXIV with its nonoxygenated 

parent LXXXIXg that it also possesses conformation XCIIIa, 

although the C-4 methyl group in CXIV is more shielded by 

5 c.p.s. than that in LXXXIXg. Compounds CXV and CXVI are 

similarly related to their 7-unoxygenated precursors. 

The optical rotatory dispersion curves of the 7-keto 

compounds reveal that all A-B trans substances (see Figure 

18) have a similar positive multiple Cotton effect differ­

ing only slightly in intensities. The differences in sub­

stitutions at the assymétrie center at C-4 probably are 

responsible for the change in the observed intensities. 

Comparison of the optical rotatory dispersion curves of 

various cis and trans 7-keto derivatives, (see Figure 19) 

show them to be very similar. It appears that the configu­

ration at C-10 controls the sign of the optical rotatory 

dispersion curve, because one will note that, when the C-10 

methyl group is fl , a positive multiple Cotton curve is 

obtained, whereas a C-10 methyl group reveals itself as 

a negative multiple Cotton curve. 

It also is interesting to compare the ring B diketone 

derivatives of aromatic diterpenoids and again try to assert 

their conformations. The acetoxymethyl quartet appears 

at 198 c.p.s. (J = 12 c.p.s.), an upfield shift of 4 c.p.s. 

from the parent non-oxygenated derivative but 5 c.p.s. 
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dovnfield as compared to the 7-keto derivative. Therefore 

it appears that a slight deshielding occurs in the dicar-

bonyl derivative as compared to the monoketone. The C-5 

hydrogen appears as a singlet at 164 c.p.s. The C-5 hydro­

gen of CXVII and CXVIII appears as a singlet as in CXIX 

at 160 2 1 c.p.s., while their C-4 methyl function is st 

strongly shielded by the aromatic ring and/or the C-6 and 

C-7 carboxyl groups. In CXX both the C-4 methyl group and 

the C-5 hydrogen are deshielded by ça. 30 c.p.s. Then all 

four diketones possess a conformation similar to XCIIa. 

This view is confirmed by the optical rotatory disper­

sion curves (see Figure 20) of these dicarbonyl systems. 

Once again a multiple Cotton curve is observed in which 

the configuration at C-10 methyl group controls the sign 

of the curve. The variations in the region between 450 

and 500 m^ appear to be due to the differences in the 

substituents at the asymétrie center at C-4. 

o 

'-u> xst 2+ X$6 

CXVII CXVIII 
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SPECTRA 

The optical rotatory dispersion curves were taken in 

dioxane solution. Concentrations for these measurements 

are expressed in grams/100 ml. 

The nuclear magnetic resonance spectra were obtained 

from dilute deuterochloroform solutions using a Varian 

Model A-60 Spectrometer. Resonance positions were deter­

mined by pre-calibrated charts relative to tetramethylsilane 

as internal standard. Peak positions were expressed in 

c.p.s. (cycles per second). 

All infrared spectra were taken on a Perkin-Elmer Model 

21 infrared spectrophotometer unless denoted by the term 

"Infracord". The latter refers to those spectra taken on 

a Perkin-Elmer model "Infracord" infrared spectrophotometer. 
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Figure 1. Infrared Spectra 
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Figure 2. Infrared Spectra 
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Figure 3. Infrared Spectra 
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Figure k. Infrared Spectra 
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Figure 5« Infrared Spectra 
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Figure 6. Infrared Spectra 
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Figure 7. Proton Magnetic Resonance Spectra 
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Figure 8. Proton Magnetic Resonance Spectra 
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gure 9* Proton Magnetic Resonance Spectra 
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Figure 10. Proton Magnetic Resonance Spectra 
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Figure 11. Proton Magnetic Resonance Spectra 
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Figure 12. Proton Magnetic Resonance Spectra 
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Figure 13. Proton Magnetic Resonance Spectra 
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gure 14. Proton Magnetic Resonance Spectr 



www.manaraa.com

85 



www.manaraa.com

Figure 15. Proton Magnetic Resonance Spectra 
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Figure 16. Proton Magnetic Resonance Spectra 
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Figure 17. Proton Magnetic Resonance Spectra 
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Figure 18. Optical Rotary Dispersion Curves 
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Figure 19. Optical Rotary Dispersion Curves 
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Figure 20. Optical Rotary Dispersion Curves 
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EXPERIMENTAL 

All melting and "boiling points are uncorrected. Micro­

analyses were performed by Midwest Microlab, Indianapolis, 

Indiana, and Alfred Bernhardt, Mikroanalytisches Laboratori-

um, Mulheim (Ruhr), Germany. Optical rotations were mea­

sured in chloroform or ethanol solutions on an 0. C. Rudolph 

polarimeter. The ultraviolet spectrum were run in 95$ 

ethanol using a Carey model 14 recording spectrophotometer. 

Chromatography was carried out with the use of three 

absorbents : Giulini Alumina obtained from Gerb. Giulini 

Gmbh., Ludwigshafen, Rhein, Germany; silica and a 50-50 

mixture of Silica Gel G and Celite. 

Thin-layer chromatography was carried out using Silica 

Gel G obtained from Research Specialties Company, 200 South 

Garrard Blvd., Richmond, California. 

5-Isodesoxypodocarponitrile Enantiomer (XXIVa) 

5-Isodesoxypodocarponitrile enantiomer, m.p. 107-108°, 

was prepared by the method of Wenkert and Jackson (22). 

Proton magnetic resonance spectrum. See Figure 14. 

Infrared spectrum. See Figure 14. 

Optical rotation. See Figure 14. 
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Oxidat ion of 5-Isodesoxypodocarponitrile Enantiomer (XXIVa) 

The procedure of Wenkert and Jackson (22) was followed 

to obtain 6,7-diketo-5-isodesoxypodocarponitrile enantiomer 

(XXVI) and 7-keto-5-isodesoxypodocarponitrile enantiomer 

(XXVa). 

Infrared spectrum. See Figure 6 for 7-keto-^-

isodesoxypodocarponitrile enant iomer. 

Proton magnetic resonance spectrum. See Figure 17 

and Figure 15, respectively. 

Reduction of 5-Isodesoxvpodocarponitrile Enantiomer (XXIVa) 

A mixture of 600 mg. of 5-isodesoxypodocarponitrile 

enantiomer and 6.5 mg. fresh lithium aluminum hydride was 

refluxed in 40 ml. dry tetrahydrofuran for one hour. Excess 

lithium aluminum hydride was decomposed with water and the 

solvent removed under reduced pressure. There was added 

30 ml. of 10% aqueous hydrochloric acid and the mixture 

refluxed for 4 hours. It was cooled and extracted with 

ether. The extract was dried over anhydrous magnesium sul­

fate and evaporated, yielding 277 mg. of crude, non-crystal­

line aldehyde (LXXIVb) which distilled at 85°/0.7 mm. Hg. 

Analysis. Calcd. for C, 84.25; H, 9.40. 

Found: C, 83.68; H, 9.40. 

Infrared spectrum. See Figure 2. 
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Optical rotation. [°<J ̂  = +1.81 (c = 1.60, EtOH) . 

Proton magnetic resonance spectrum. See Figure 14. 

Its 2,4-dinitrophenylhydrazon was crystallized from 

ethanol to give fine needles, m.p. 203-204°. 

Analysis• Calcd. for C, 65.38; H, 6.20; 

N, 13.26. Found: C, 65-56; H, 6.19; N, 13-13• 

The acidic solution was basified and extracted with 

ether. The ether solution was dried over magnesium sulfate 

and evaporated, yielding 291 mg. of crude amine. Crystal­

lization from ether yielded the pure amine (XXIVc) m.p. 

80-81°. 

Analysis. Calcd. for C]_yH2̂ N: C, 83.89; H, 10.35; 

N, 5-76. Found: C, 81.88; H, 10.52 ; N, 5-63 -

Optical Rotation. (j*] q2 = +3.38 (c = 1.33, EtOH). 

Infrared spectrum. A max. 2,90(m) and 6.20(m) 

microns. (Infracord). 

5-Isodesoxypodocarpane (LXXIVd) 

A solution of 216 mg. of 5-isodesoxypodocarpal enantio­

mer and 3 ml. of hydrazine in 5 ml. anhydrous diethylene-

glycol was heated at 140° for 1 hour. After cooling for 

15 min. 2 g. of potassium hydroxide pellets were added. 

The condenser was removed (in hood) until the temperature 

had risen to 200° whereupon the solution was refluxed for 
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4 hours. Water was added to the cooled mixture and extracted 

with ether. The ether extract was washed with aqueous 1C% 

hydrochloric acid, water, and dried over magnesium sulfate. 

Upon evaporation 153 mg. of crude 5-isodesoxypodocarpane 

was obtained b.p. 70°/0.7 mm. Hg. Upon distillation a 

crystalline product was obtained, m.p. 47-50°. jlit. (25) 

b.p. 150-160°A mm. Hg, m.p. 53-54°] 

Analysis. Calcd. for C^yHg^: C, 89.41: H, 10.59-

Found: C, 89-48; H, 10.61. 

Infrared spectrum. See Figure 2. 

5-Isodesoxypodocarpic Acid Enantiomer 

A mixture of 18 g. of 5-isodesoxypodocarponitrile 

(LXXIVa), 30 g- of sodium hydroxide and 250 ml. of diethy-

lene glycol was heated at 170° for 5 days. After the addi­

tion of 10 ml. of water the solution was heated at 190° 

for an additional 3 days. The cooled reaction solution 

was poured into water and extracted with ether. The ex­

tract was dried (magnesium sulfate) and evaporated to yield 

1.47 g. of 5-isodesoxypodocarpamide. The aqueous phase 

then was acidified with 6 N hydrochloric acid and again 

extracted with ether. The extract was dried (magnesium 

sulfate) and evaporated to yield 16.53 g. of 5-isodesoxy-

podocarpic acid enantiomer, m.p. 159-160 (22). 
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Methyl 5-Isodesoxypodocarpate Enantiomer (LXXIVf) 

An ether solution of diazomethane (made from 52 ml. 

of 50# potassium hydroxide, 20 g. N-nitrosomethylurea in 

ether) was added to an ether-methanol solution of 18.0 g. 

of the above acid. Two hours later the excess diazomethane 

was decomposed with acetic acid and the solvent removed 

under reduced pressure. Crystallization of the solid resi­

due from methanol yielded 16.7 g. of ester, m.p. 87-89°. 

[Lit. (22) m.p. 90-90.5^ 

Proton magnetic resonance spectrum. See Figure 14. 

5-Isodesoxypodocarpol Enantiomer (LXXIVe) 

A mixture of 200 mg. methyl 5-isodesoxypodocarpate 

enantiomer and 200 mg. lithium aluminum hydride was stirred 

overnight in 20 ml. dry tetrahydrofuran. Wet magnesium sul­

fate was added to decompose the excess hydride. Filtration 

and evaporation of the filtrate yielded 110 mg. of crude 

crystalline alcohol m.p. 55-60°. Sublimation gave pure 

5-isodesoxypodocarpol enantiomer, m.p. 67-69°. 

Analysis. Calcd. for C^H^i+O : C, 83.55; H, 9.90. 

Found: C, 83.52; H, 10.15. 

Optical rotation. [<*-]§2 = +5.55 (c = 0.99, EtOH). 
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5-IsodesoxvpodocarPol Acetate Enantiomer (LXXIVL) 

A mixture of 300 mg. 5-isodesoxypodocarpol enantiomer, 

50 mg. anhydrous sodium acetate, and 20 ml. acetic anhydride 

was refluxed for 5 hours. Methanol was added and the sol­

vent removed under reduced pressure. Water was added and 

the solution extracted with ether. The ether extract was 

washed with saturated sodium bicarbonate and with water, 

dried, and the solvent removed. A yield of 298 mg. of 5-

isodesoxypodocarpol acetate was obtained which upon micro-

distillation gave a clear oil, b.p. ~l40°/0.75 mm. Hg. 

Analysis. Calcd. for C^gHg^Og: C, 79-68; H, 9-15-

Found : C, 79-54; H, 9-37-

Infrared spectrum. See Figure 2. 

Optical rotation. [ocj= -26.9 (c = 1.04, CHCl^). 

Proton magnetic resonance spectrum. See Figure 15-

Methyl 7-Ketodesoxypodocarpate Enantiomer (LXXVI) 

Methyl 7-ketodesoxypodocarpate enantiomer was prepared 

by the method of Ohta and Ohmori (24). 

Methyl 6-Bromo-7-ketodesoxvpodocarpate Enantiomer 

The method of Ohta and Ohmori (25) was followed to pre­

pare methyl 6-bromo-7-ketodesoxypodocarpate enantiomer. 
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Methyl A '"°-7-Ketodesoxynodocsroate Enant iomer (LXXIIb) 

The method of Ohta and Ohmori (25) vas folloved in pre­

paring methyl A^' ̂-7-ketodesoxypodocarpate enantiomer. 

A^;^-7-KetodesQxyt)OdocarDonitrile Enantiomer (LXXIIc) 

A solution of 400 mg. of Ay'v-7-ketodesoxypodocarpo-

nitrile enantiomer and 1.50 g. selenium dioxide, in 35 ml. 

acetic acid and 5 ml. vater vas refluxed for 1.5 hours. 

The precipitated selenium was filtered through a filter aid 

and the solvent removed. Water was added and the solution 

extracted with ether. The ether extract vas dried over an­

hydrous magnesium sulfate and evaporated to yield a yellow 

oil. Addition of hexane and benzene yielded 97 mg. of cry­

stalline diketone identical vith an authentic sample. 

Chromatography of the mother liquor on Giulini alumina, 

activity III, and elution with hexane-ether (9:1) gave 150 

mg. of crystalline ene-one. Recrystallization from benzene-

hexane and sublimation gave pure ^'^-7-ketodesoxypodocar-

ponitrile enantiomer, m.p. 213-214°. 

Analysis. Calcd. for C-^H-^ON: C, 81.24; H, 6.82; 

N, 5-57. Found: C, 81.20; H, 6.90; N, 5-5-

Infrared spectrum. See Figure 4. 

Optical rotation. D"^ = -112.9 (c = 1.24, CHCl^) 
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A solution of 1 g. of methyl A^'^-7-ketodesoxypodocar-

pate enantiomer and 3 g. of anhydrous lithium iodide was 

refluxed under nitrogen in 50 ml. dry collidine (distilled 

from calcium hydride) for 8 hours. Aqueous hydrochloric 

acid was added and extracted with ether. Ether extract was 

washed with 10% aqueous hydrochloric acid to remove colli­

dine. After drying over magnesium sulfate and evaporation 

a yield of 300 mg. of crystalline solid was obtained. 

Sublimation afforded pure ketone LXXIIc, m.p. 119-120°. 

[Lit. (39) m.p. 120-121^] 

5-Iso-7-ketodesoxypodocarT)ol Acetate Enantiomer (LXXV) 

To a solution of 218 mg. of 5 iso-desoxypodocarpol ace­

tate dissolved in 10 ml. acetic anhydride was added 100 mg. 

of chromium trioxide over a period of 3 hours. After stir­

ring at room temperature for 16 hours, methanol was added 

and solvent removed under reduced pressure. Water was added 

and extracted with ether. The ether extract was washed with 

saturated sodium bicarbonate, water, dried, and solvent re­

moved, yielding 2^3 mg. of crude product. Micro-distilla­

tion yielded the pure 5 iso-7-ketodesoxypodocarpol acetate 

enantiomer, b.p. ^160/0.75 mm. Hg. 

Analysis. Calcd. for C-^Hg^O^: C, 75-97; H, 8.05. 

Found: C, 76.08; H, 8.13. 
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Infrared spectrum. See Figure 6. 

Optical rotation. [*] = (c = 1.32, CHCl^). 

Optical rotatory dispersion curve. See Figure 19. 

Proton magnetic resonance spectrum. See Figure 16. 

Methyl À^^-7-Ketodehvdroabietate (LXXIb) 

The previously described method by Wenkert, Carney, 

and Kaneko (62) was used to prepare methyl A^'^-7-keto-
dehydroabietate. 

Proton magnetic resonance spectrum. See Figure 16. 

Dehvdroabietal (LXXXVIc) and Dehydroabietyl Amine (LXXXVIe) 

A mixture of 600 mg. of dehydroabietonitrile and 65 mg. 

fresh lithium aluminum hydride was refluxed in 12 ml. of 

dry tetrahydrofuran for one hour. The excess hydride was 

decomposed with water and the solvent removed under reduced 

pressure. To the residue was added 30 ml. of 10$ aqueous 

hydrochloric acid and the mixture refluxed for 1 hour. It 

then was cooled and extracted with ether. The extract was 

dried over anhydrous magnesium sulfate and evaporated yield­

ing 262 mg. of dehydroabietal, m.p. 90-91°• [Lit. (84) 

semicarbazone m.p. 217-219^) 

Proton magnetic resonance spectrum. See Figure 9» 
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The acid solution vas basified and extracte.i with ether. 

The ether solution was dried over magnesium sulfate and 

evaporated, yielding 317 mg. of amine (I.XXXYle) b.p. 

-13C0/2.5 Hg. [Lit. (85) b.p. ca. 250°/i2 mz. Hg, 

m.p. 

Hydrogénation of Methyl ^-7-Ketodehydritate (LXXX) 

A r̂ -  ̂

A mixture of 100 mg. of methyl Û'1"-7-k^todohydro-

abietate, 200 rr.£.. of 10% palladium-on-charcoal, 3 drops of 

concentrated sulfuric acid and 15 ml. of ethyl acetate was 

hydrogenated at room temperature and atmospheric pressure. 

Thereafter the palladium-on-charcoal was removed by filtra­

tion over a bed of celite. After evaporation under reduced 

pressure water was added and the mixture extracted with 

ether. The combined ether extract was dried over anhydrous 

magnesium sulfate and the solvent magnesium sulfate and 

the solvent removed. The resulting oil weighed 65 mg. 

Thin-layer chromatography on silica, using 5$ ethyl 

acetate — 95% chloroform to develop, was used to compare 

the reduced compound and methyl dehydroabietate * A single 

spot with identical R^ value resulted. Proton magnetic 

resonance analysis of both indicated that they were the 

same. 

Proton magnetic resonance spectrum. See Figure 
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Dehydro ablet ane (LXXXVIh) 

The method of Wenkert and Beak (86) was used to prepare 

dehydroabietane. 

Oxidation of Dehydroabietane 

To a solution of 10 g. of dehydroabietane dissolved 

in 100 ml. acetic acid and 80 ml. acetic anhydride was added 

15 g. of chromium trioxide over a 7-hour period. The tem­

perature was kept between 20-25° by using an ice bath. The 

reaction mixture was left stirring at room temperature 

overnight. The mixture was poured into 320 g. of ice and 

8 g. sodium acetate and stirred for 2 hours. The crude gum 

collected on the sides of the beaker. The solution was 

decanted and extracted with ether and the extract combined 

with the etheral solution of the gum. The combined ether 

extract was washed with water until the water layer was 

neutral. The extract was dried over magnesium sulfate and 

evaporated. The residue was chromatographed on alumina. 

Elution with hexane gave 6.7 g. of non-crystalline keto-

acetate (LXII). 

Further elution with 1:9 benzene-hexane gave 2.4 g. of 

the diketone which crystallized on standing. Crystalliza­

tion of the solid from methanol gave 7-keto-13-acetyldeiso-

propyldehydroabietane (LXI), m.p. 143-145°. 
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Analysis. Calcd. for C^gHgi+Og: C, 80.24; H, 8.51• 

Found : C, 80.22; H, 8.16. 

Optical rotation. [*-] ̂  = +31 • 8 (c = 1.33, CHCl^) (86). 

16-Hvdroxvdehydroab ietane (LXIII) 

To a solution of 4.0 g. keto-acetate LXII in 100 ml. 

diethylene glycol was added 50 ml. anhydrous hydrazine. 

The solution was heated at 100° for 1.5 hours, cooled slight­

ly "before adding 3° g. of potassium hydroxide pellets. The 

condenser was removed and the temperature was raised to 

190-200° and refluxed for 4 hours. Foaming was controlled 

by lowering the temperature. After the mixture had cooled, 

water was added and the mixture extracted with ether several 

times. The combined ether extract was washed with water, 

dilute hydrochloric acid, and dried over anhydrous magne­

sium sulfate. Evaporation of the solvent yielded 3*2 g. 

of material which crystallized from hexane. Recrystalli-

zation from hexane afforded 16-hydroxydehydroabietane, m.p. 

99-100°. 

Analysis. Calcd. for O^^^O; C, 83.86; H, 10.56. 

Found: C, 83.69; H, 10.47. 

Optical rotation. (j*] = +52.5 (c = 1.70, CHClg) 

(86).  
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Al6 ; -^-Dehvdroabletene 

To a solution of 1.6 g. alcohol LXIII dissolved in 15 

ml. dry pyridine was added 2 ml. of phosphorous oxychloride. 

The solution was stirred at room temperature overnight, 

after which water was cautiously added. The solution was 

made acidic with dilute hydrochloric acid and extracted 

with ether several times. The combined ether extract was 

washed with water and with saturated sodium chloride, and 

dried over magnesium sulfate. Evaporation yielded 3.2 g. 

of 7-ket0-13-carboxydeisopropyldehydroabietane (LXIVa). 

Crystallization from methanol followed by sublimation gave 

a pure material m.p. 222-223°• 

Analysis. Calcd. for '• 0, 75.^9; H, 7.74. 

Found: C, 75-39; H, 7.48. 

Optical rotation. fp = +41.0 (c = 0.21, CHCl^). 

An ether solution of diazomethane (from 200 mg. N-

nitrosomethylurea and 3 ml• 50$ potassium hydroxide in ether) 

was added to a solution of 100 mg. of 7-keto-13-carboxy-

deisopropyldehydroabietane in 10 ml. ether. After 15 min. 

the solution was evaporated under reduced pressure leaving 

100 mg. of solid residue. Crystallization from methanol 

afforded pure 7-keto-13-carbomethoxydeisopropyldehydroabie-

tane m.p. 105-107°. 
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Analysis. Calcd. for C]_9H24°3: C' 75*97; H, 8.05-

Found : C, 75-77; H, 8.08. 

Infrared spectrum. See Figure 4. 

Optical rotation. j^J ̂  = +10.7 (c = 1.08, CHCl^). 

11-Carbomethoxydeisopropvldehydroabietane (LXVb) 

To a solution of 300 mg. of keto-acid LXIVa in 20 ml. 

of diethylene glycol was added 3•5 ml. of anhydrous hydra­

zine. The solution was heated at 100° for 1 hour and cooled 

slightly before the addition of 3.0 g. of potassium hydroxide 

pellets. The condenser was removed and the temperature 

raised to 190-200° and the mixture heated for 5i hours. 

Aqueous hydrochloric acid was added to the cooled mixture 

and it was extracted with ether several times. The combines 

extract was washed with water and dried over anhydrous mag­

nesium sulfate. Evaporation of the solvent yielded the 

7-desoxy acid LXVa. Sublimation gave a crystalline solid 

which softened at 113-115° and melted at 215-218°. 

Analysis. Calcd. for C^gHgi^Og: C, 79-375 H, 8.88. 

Found: C, 78.98; H, 8.83. 

Infrared spectrum. X max. 5-82(s) microns (Infracord). 

Optical rotation. [ocj 23 = +25-9 (c = 0.39, CHClg ). 

An ether solution of diazomethane was added to a solu­

tion of 100 mg. of the acid LXVa in 10 ml. ether. After 
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30 minutes the solution vas evaporated under reduced pressure 

leaving a crystalline solid. Sublimation afforded an analy­

tically pure residue LXVb m.p. 110-111°. 

Analysis. Calcd. for C, 79.68; H, 9-15. 

Found: C, 79-40; H, 9-29-

Optical rotation. jedj fp = +56.4 (c = 1.35» CHCl^ ). 

16-Hvdroxydehvdroabietane (LXIII) 

A flask containing 85 mg. (10 times excess) of magne­

sium was dried by heating with a free flame and keeping the 

contents under nitrogen. Upon cooling, dry tetrahydrofuran 

and 0.1 ml. methyl iodide was added. Bubbles began tc form 

at once, whereupon more tetrahydrofuran and 0.4 ml. methyl 

iodide was added. The mixture was heated until most of the 

magnesium had dissolved. The ester LXVb (25 mg.) dissolved 

in tetrahydrofuran was added to the mixture and the latter 

refluxed for four hours. Aqueous ammonium chloride was add­

ed whereupon the solution was extracted with ether. After 

the ether was dried over anhydrous magnesium sulfate the 

solvent was removed under reduced pressure. Crystalliza­

tion from hexane afforded 16-hydroxy-dehydroabietane (LXIII) 

m.p. 99-100°. Mixed melting point with authentic sample was 

undepressed. 
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Reduction of Keto-enolaeetate Nitrile (XXX) 

A mixture of 2.36 g. of keto-enolacetate nitrile XXX 

dissolved in 120 ml. ethyl acetate, 1.2 ml. concentrated 

sulfuric acid and 1.6 g. 10$ palladium-charcoal was placed 

in a Parr hydrogenator under 10 pounds hydrogen and shaken 

for 8 hours. The catalyst was removed by filtration and 

the solvent removed. Water was added and the mixture ex­

tracted with ether. The extract was washed with saturated 

sodium bicarbonate and with water and dried over magnesium 

sulfate. A residue of 1.82 g. resulted. Chromatography 

of 3.2 g. of this residue on alumina, activity III, yielded 

2.05 g. of desoxypodocarponitrile enantiomer (XXXIIIa) 

m.p. 87-88° (22) upon elution with hexane. 

Infrared spectrum. See Figure 1. 

Elution with 10-30$ ether-hexane yielded t+55 mg. of 

6 cc-acetoxydesoxypodocarponitrile enantiomer (XXXIa), m.p. 

117-118° (22). 

Lithium Aluminum Hydride Reduction of Nitrile XXXIIIa 

A mixture of 600 mg. of desoxypodocarponitrile enantio­

mer (XXXIIIa) and 65 mg. lithium aluminum hydride was re­

fluxed for one hour in 40 ml. anhydrous tetrahydrofuran. 

Water was added, the solvent removed under reduced pressure 

and 30 ml. of 10$ hydrochloric acid added. The mixture was 
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refluxed for 4 hours, cooled and extracted with ether. 

The extract was washed with water and dried (magnesium sul­

fate). Solvent removal yielded 5*+9 mg. of crude aldehyde. 

Crystallization from methanol gave pure desoxypodocarpal 

enantiomer (XXXIIIb), m.p. 91-94°. The remaining aqueous 

solution was made basic and extracted with ether. The ex­

tract was dried (magnesium sulfate) and evaporated, yield­

ing 52 mg. of crude amine. Distillation under reduced 

pressure gave pure desoxypodocarpyl amine enantiomer 

(XXXIIIc), b.p. ~95°/0.7 mm. Hg. 

Analysis. Calcd. for C17H25N: C, 83.89; H, 10.35; 

N, 5-76. Found: C, 83.63; H, 10,54; N, 6.04. 

Optical rotation. [K] D^ = *78 (c = 2.99, EtOH). 

Oxidation of Desoxypodocarpal Enantiomer (XXXIIIb) 

Method I. A solution of 325 mg. potassium permanga­

nate in 15 ml. of water was added over a 5-hour period with 

stirring to 500 mg. of desoxypodocarpal enantiomer dissolved 

in 50 ml. acetone. Sodium sulfite was added to destroy the 

excess permanganate. Aqueous hydrochloric acid was added 

and the solution extracted with ether. The extract was 

washed with 10# sodium hydroxide, whereupon the aqueous 

solution was acidified and extracted with ether. The ex­

tract was dried (sodium sulfate) and evaporated under 
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501 mg. of acid. Recrystallization from methanol-water gave 

the pure desoxypodocarpic acid enantiomer (XXXIIId), m.p. 

194-195°. 

Method II. A solution of 32 mg. of aldehyde XXXIIIb, 

2 ml. of 95% ethanol, 1 ml. 10% sodium hydroxide, and 0-5 

ml. 30% hydrogen peroxide was combined and let stand for 

25 hours. Extraction with ether yielded 11 mg. of desoxy­

podocarpic acid enantiomer (XXXIIId). Refluxing the above 

solution for 30 minutes gave overoxidation products indi­

cated by absorption at 5-93/<. (7-ketone) in the infrared. 

Desoxypodocarpic Hydrazide Enantiomer (XXXIIIe) 

A solution of 50 mg. of desoxypodocarpic acid enantio­

mer (XXXIIId), 2 drops of dry pyridine and 1 ml. of thionyl 

chloride was left standing at room temperature for 2 hours. 

The solution was evaporated under reduced pressure. The res­

idue was dissolved in 10 ml. ether and 0.3 ml. 95% hydra­

zine hydrate in 1 ml. absolute ethanol at 0° was added. 

The mixture was shaken and after 5 minutes was poured into 

water and extracted with ether. The extract was dried 

(anhydrous magnesium sulfate) and evaporated under reduced 

pressure yielding 52 mg. of desoxypodocarpic hydrazide 
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enantiomer, m.p. 162-168°. Recrystallization from ethyl 

acetate and sublimation yielded a pure sample m.p. 169-170°. 

Analysis. Calcd. for C1yH2i4.0N2: C, 74.96; H, 8.88; 

N, 10.29. Found: C, 74.77; H, 8.68; N, 10.26. 

Infrared spectrum. See Figure 1. 

Optical rotation. \oc] = -127.8 (c = 0.80, EtOH). 

Photolysis of Desoxypodocarpic Acid Azide Enantiomer 

To 290 mg. of the hydrazide XXXIIIe dissolved in 10 ml. 

of acetic acid after cooling was added a saturated solution 

of 125 mg. of sodium nitrite in water and the mixture shaken 

for a few minutes. It was diluted with water and extracted 

with N-hexane. The extract was washed with ice water, 

with 5% sodium bicarbonate, again with water and then dried 

(sodium sulfate). The infrared spectrum of the hexane so­

lution indicated absorption at 4.^. (isocyanate) and 5*^-

(acid azide). 

The hexane solution of the azide was irradiated using 

a water-cooled Pyrex vessel, a water-cooled Quartz immer­

sion well and a 500 watt Hanovia high pressure mercury arc 

lamp. After an exposure of 1 hour the disappearance of the 

azide bands in the infrared spectrum was observed. The 

reaction mixture was evaporated and chromatographed on 

Giulini alumina, activity IV, in hexane. Elution with 
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hexane gave 82 mg. of isocyanate as an oil, infrared spec­

trum 4.40a• Hexane-benzene elution yielded 62 mg. of X -

lactam (infrared band at 5-98/tx) as an oil. Ether-benzene 

elution gave 20 mg. of oily 5-lactam, (infrared band at 

6.0^/v ). 

6-ot-Hvdroxydesoxypodocarponitrile Enantiomer (XXXIb) 

To a solution of 1.00 g. 6-acetoxydesoxypodocarponi-

trile enantiomer (XXXIa) dissolved in 100 ml. of ethanol 

was added 50 ml. of 10# sodium hydroxide. After stirring 

at room temperature under nitrogen for 19 hours the ethanol 

was removed under reduced pressure. Water was added and the 

solution extracted with ether. The ether extracted washed 

with water, dried (magnesium sulfate), and solvent removed, 

yielding 843 mg. of crude crystalline product. Recrystal-

lization from ethyl acetate-chloroform gave the pure 6-

hydroxydesoxypodocarponitrile enantiomer, m.p. 204-205°. 

Analysis. Calcd. for C-^H^ON: C, 79-96; H, 8.29; 

N, 5-49- Found: C, 80.15; H, 8.44; N, 5.36. 

Infrared spectrum. See Figure 3. 

Optical rotation. [<<] §3 = -32.1 (c = 1.11, CHCL.). 

Proton magnetic resonance spectrum. See Figure 16. 
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6-oC -Hydroxvdesoxvpodocarponltrile Nitrite Enantiomer (XXXIc) 

Nitrosyl chloride gas was bubbled through a stirring 

solution of 100 mg. of 6-hydroxypodocarponitrile enantiomer 

(XXXIb) dissolved in 15 ml. dry pyridine and cooled to be­

tween -20° and -30°. When the solution appeared to have a 

persistent reddish-brown color, water was added and the 

crystalline precipitate filtered and washed with water to 

give 108 mg. of crude product. Recrystallization from 

methylene chloride-hexane gave the pure nitrite XXXIc, m.p. 

189-191°. 

Analysis. Calcd. for C^yHggOgNg: C, 71.80; H, 7.09; 

N, 9-85. Found: C, 72.09; H, 7-31+; N, 10.03. 

Infrared spectrum. See Figure 3• 

Optical rotation. jj<] jp = -26.6 (c = 1.07, CHCl^). 

Photolysis of 6- << -Hvdroxvdesoxvpodccarponitrile Nitrite 

Enantiomer (XXXIc) 

The apparatus consisted of a water-cooled Pyrex vessel, 

a water-cooled Quartz immersion well and a 500 watt Hanovia 

high pressure mercury arc lamp with a pyrex filter sleeve. 

A solution of 350 mg. of 6-ec-hydroxydesoxypodocarponitrile 

nitrite enantiomer in 150 ml. of dry benzene was irradiated 

at about 20° for 1 hour with mixing at 10 minute intervals. 
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After standing overnight the solvent was removed. The resi­

due was dissolved in 10 ml. acetic anhydride to which was 

added 100 mg. sodium acetate and refluxed for 1 hour. 

Chromatography on Guilini alumina, activity I (pH 4-5), and 

elution with 5% ether-hexane gave 120 mg. of 6- << -acetoxy-

desoxypodocarponitrile enantiomer (XXXIa) No other products 

could be identified. 

Methyl Desoxypodocarpate (Xle) 

Methyl desoxypodocarpate was prepared by the procedure 

of Wenkert and Jackson (28). 

Proton magnetic resonance spectrum. See Figure 12. 

Methyl 7-Ketodesoxypodocarpate (XXXVI) 

The procedure of Wenkert and Jackson (22) was used in 

preparing methyl 7-ketodesoxypodocarpate. 

Optical rotatory dispersion curve. See Figure 18. 

Proton magnetic resonance spectrum. See Figure 13. 

Methyl A ^-7-Ketodesoxvpodocarpate (LXXIb) 

A mixture of 2.8 g, of methyl 7-ketodesoxypodocarpate 

and 5 g« of freshly sublimed selenium dioxide in 80 ml. 

acetic acid and water (enough for dissolution) was refluxed 
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for 6 hours. The mixture was filtered and the solvent re­

moved under reduced pressure. Water was added, the mixture 

extracted with ether and the extract dried over magnesium 

sulfate and evaporated. Crystallization from methanol gave 

2.8 g. of crude product. Recrystallization gave pure methyl 

6-7-ketodesoxypodocarpate, m.p. 105-106 [Lit. (25) 

m.p. 105-106°]. 

Analysis. Calcd. for C^gHggO^: C, 76.03; H, 7.09. 

Found: C, 75*76; H, 7.21. 

Optical rotation. [*] = +164.9 (c = 0.69 CHCl^). 

H D2 = +1^9.18 (c = 0.85 EtOH). 

Hydrolysis of Methyl A ̂ ^-7-ketodesoxypodocarpate (LXXIb) 

To 60 ml. collidine (distilled from calcium hydride) 

was added 2 g. of ene-one ester LXXIb and 5 g. lithium io­

dide (freshly dried by heating under vacuum until all water 

was removed). This mixture was refluxed under nitrogen for 

10.5 hours. The solution cooled and upon the addition of 

water, extracted with ether. The extract was washed with 

10% hydrochloric acid and with water and dried over anhy­

drous magnesium sulfate. The solvent was removed under re­

duced pressure, yielding 1.59 g* of crystalline product. 

Sublimation -afforded a pure analytical sample of ketone 

LXXIa, m.p. 119-120°. (Lit. (25) m.p. 120-121^] 
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Analysis. Calcd. for C-^H^gO: C, 84.91> H, 8.02. 

Found: C, 85.19; H, 8.4]. 

Optical rotation. [=/.] §3 = +54.7 (c = 0.51, CHClg). 

Wd2 = +99-9 (c = 0.72, EtOH). 

A mixture of 30 ml. of 12% potassium hydroxide-ethanol 

solution and 530 mg. of ene-one ester LXXIb was refluxed 

for 2 hours. The solvent was evaporated under reduced pres­

sure and water was added. The mixture was extracted with 

ether and the extract dried over anhydrous magnesium sulfate. 

Evaporation of the solution under reduced pressure yielded 

•+30 mg. of crude product. 

Chromatography on silica yielded only a small amount 

of the decarboxylated product LXXIa. 

5(6)-Dehvdro-6-hydroxy-7-ketodehydroabiét ic Lactone (LXXVII) 

5(6)-Dehydro-6-hydroxy-7-ketodehydroabietic lactone 

was prepared according to the procedures of Wenkert, Carney 

and Kaneko (62). 

Proton magnetic resonance spectrum. See Figure 7• 
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6-Hydroxv-7-hvdroxydehvdroabietic Lactone (LXXVIII) 

The procedures of Wenkert, Carney and Kaneko (62) were 

followed in preparing 6-hydroxy-7-hydroxydehydroabietic 

lactone. 

Proton magnetic resonance spectrum. See Figure 7• 

6-Hvdroxv-7-ketodehvdroabietic Lactone (LXXIX) 

The procedures of Wenkert, Carney and Kaneko (62) were 

followed in preparing 6-hydroxy-7-ketodehydroabietic lactone. 

Proton magnetic resonance spectrum. See Figure 7• 

Methyl 5-Isodehvdroabietate (LXXXIb) 

To a solution of 28 mg. of 6-hydr oxy-7-ketodehydro-

abietic lactone (LXXIX) dissolved in 2 ml. acetic acid was 

added zinc amalgam (made by shaking 3 g. zinc metal, 20 

mesh, 0-3 g. mercuric chloride, 0.24 ml. concentrated 

hydrochloric acid, and 4 ml. water for 5 min.) and 6 ml. 

of 6 N hydrochloric acid. This mixture was refluxed 50 

hours. The mixture was cooled, decanted and extracted with 

ether. The extract was washed with 5$ aqueous sodium hy­

droxide. The aqueous extract was acidified with hydrochloric 

acid and extracted with ether. The organic extract was 

dried over anhydrous magnesium sulfate and evaporated under 
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reduced pressure, yielding 16 mg. of 5-isodehydroabietic 

acid (LXXXIa). Crystallization from aqueous methanol gave 

pure acid, m.p. 121-124°. 

Analysis. Calcd. for CggHggOg: C, 79«95î H, 9-39« 

Foundi C, 80.01; H, 9.18. 

Optical rotation. Jcxfj ̂ 3 = -106 (c = 0.57, CHCl^) 

An etheral solution of 120 mg. of 5-isodehydroabietic 

acid was treated with an ether solution of excess diazome-

thane for 3 hours. The solution was evaporated under re­

duced pressure yielding methyl 5-isodehydroabietate LXXXIb. 

Sublimation yielded the pure ester, m.p. 98-100°. 

Analysis. Calcd. for C2iH30^2: C' 80.21; H, 9*62. 

Found: C, 79*99; H, 9.48. 

Infrared spectrum. See Figure 5« 

Optical rotation. [o<f] = -58.5 (c = 1.25, CHClg). 

Proton magnetic resonance spectrum. See Figure 11. 

Hydrogenation of 6-Hvdroxv-7-ketodehvdroabietic Lactone 

(LXXIX) 

A mixture of 17 mg. of 6-hydroxy-7-ketodehydroabietic 

lactone, 50 mg. of 10% palladium-charcoal and 2 drops of 

concentrated sulfuric acid in 15 ml. of ethyl acetate was 

hydrogenated at room temperature and atmospheric pressure. 

When the uptake of hydrogen ceased, the catalyst was filtered 
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using Celite as a filter-aid and the solvent removed under 

reduced pressure. Water was added and the mixture extracted 

with ether. The extract was washed with 5/6 sodium hydroxide, 

water and dried (magnesium sulfate). Evaporation of the 

lactone). Acidification of the aqueous extract, extraction 

with ether, drying of the ether solution (magnesium sulfate) 

and evaporation yielded no acidic material, 

Reduction of 5(6)-Dehydro-6-hydroxy-7-ketodehydroabietic 

Lactone (LXXVII) 

A mixture of 260 mg» of 5(6)-dehydro-6-hydroxy-7-keto-

dehydroabietic lactone (LXXVII), 400 mg. of 10% palladium-

charcoal and 5 drops of concentrated sulfuric acid in 20 ml. 

of ethyl acetate was hydrogenated at room temperature and 

atmospheric pressure. After a four-mole uptake of hydrogen, 

the reaction ceased, the catalyst was filtered, and the 

solvent removed under reduced pressure « Water was added 

and the mixture extracted with ether. The extract was dried 

(anhydrous magnesium sulfate) and evaporated. Crystalliza­

tion from aqueous methanol gave 5-iso-dehydroabietic acid 

LXXXIa, m.p. 121-124°, infrared spectrum and p.m.r« spectrum 

identical with that obtained by zinc-hydrochloric acid re­

duction of 6-hydroxy-7-ketodehydroabietic lactone. 

ether yielded 16 mg. of a lactone. 



www.manaraa.com

125 

Oxidat ion of Methyl 5-Isodehvdroabietate (LXXXIb) 

To a solution of 200 mg. methyl 5-isodehydroabietate 

dissolved in 2.5 ml. acetic acid, was added 250 mg. chromium 

trioxide dissolved in 4 ml. acetic acid and 1 ml. water. 

After stirring at room temperature for 15 hours saturated 

sodium chloride was added and the mixture extracted with 

chloroform. The extract was washed with 5% aqueous sodium 

hydroxide and water, dried (anhydrous magnesium sulfate) 

and evaporated under reduced pressure, yielding 209 mg. 

of neutral material. 

Chromatography of 50 mg, of neutral material on alumina, 

activity III, and elution with 10% benzene-hexane gave 45 

mg. of keto-ester LXXXIV, m.p. 98-100°, after two sublimations. 

Analysis. Calcd. for : ^, 76.79; H, 8.59° 

Found: C, 76.41; H, 8.71» 

Infrared spectrum. See Figure 5» 

Optical rotation. [=<] = +9»9 (c = 1.22, CHCl^). 

Optical rotatory dispersion curve. See Figure 19» 

Proton magnetic resonance spectrum. See Figure 12. 

Addification of the aqueous solution and extraction 

with chloroform yielded 9 mg. of acidic material. 
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Reduction of Methyl 5-Isodehvdroabietate (LXXXI) 

To a solution of 100 mg. of methyl 5-isodehydroabietate 

dissolved in 25 ml. of dry tetrahydrofurone was added 200 mg. 

of lithium aluminum hydride and the mixture refluxed over­

night. After wet sodium sulfate was used to decompose the 

excess lithium aluminum hydride, the mixture was filtered 

and the solvent removed under reduced pressure. The oily 

residue was distilled, b.p. ~110/0,25 mm, Eg,. Upon stand­

ing the 5-isodehydroabietol (LXXXIc) crystallized, m.p, 

61-62°. 

Analysis. Calcd, for C^qH^qO: C, 83.86; H, 10.56. 

Found: C, 83,92; h, 10,59-

Infrared spectrum. See Figure 5-

Optical rotation. [^J ̂ 0̂  = -9°7 (c = 0,94, CHCl^), 

Proton magnetic resonance spectrum. See Figure 11. 

5-Isodehydroabietol Acetate 

A mixture of 29 mg, of 5-isodehydroabietol (LXXXI), 

5 mg. of anhydrous sodium acetate, and 4 ml. of acetic an­

hydride was refluxed for 2 hours. Methanol was added and 

the solvent removed under reduced pressure. Water was added 

and the solution extracted with ether. The ether extract 

was washed with saturated sodium bicarbonate and with water, 
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dried (magnesium sulfate), and the solvent removed. A yield 

of 31+ mg. of 5-isodehydroabietol acetate was obtained which 

upon micro-distillation gave a clear oil, b.p. ~90°/0.25 mm. 

Hg. 

Analysis. Calcd. for 022^32^2* 80.44; H, 9.87« 

Found: C, 80.44; H, 10.01. 

Infrared spectrum» See Figure 6. 

Optical rotation. Jot] ̂ 3 - 5 = +3 ,3 (c = 0-96, CHCl^). 

Proton magnetic resonance spectrum. See Figure 12-

Reduction of 5(6)-Dehydro-6-hydroxy-7-ketodehydroabietic 

Lactone (LXXVII) 

A solution of 45 mg. lactone LXXVII dissolved in 10 ml. 

acetic acid to which 50 mg. zinc dust had been added, was 

refluxed for a total of 6 hours. After each 30-minute period 

of refluxing an additional 25 mg. of zinc dust were added. 

The acetic acid was removed under reduced pressure,water 

was added and the mixture extracted with ether. The extract 

was dried and the solvent removed. Since the infrared spec­

trum of the crude product indicated that the reduction was 

not complete, the residue was dissolved in 5 nil. acetic acid, 

300 mg. of zinc dust were added, the mixture refluxed for 

5.5 hours and the reaction worked up as before. The ether 

solution was extracted with 5% sodium hydroxide, the aqueous 
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solution acidified and extracted with ether. The organic 

extract was dried (magnesium sulfate) and the solvent re­

moved under reduced pressure, yielding 20 mg. of impure ma­

terial. Chromatography on a column of 50% Silica Gel G and 

50% Celite and elution with chloroform yielded nonidentifi-

able impurities. Upon eluting with 5% acetic acid in chloro­

form a crystalline acidic material was obtained and on sub­

limation gave 5-iso-7-ketodehydroabietic acid (LXXXIVa), 

m.p. 174-180°. 

Analysis » Calcd. for C20H26°3: C' 76.40 ; H, 8-34. 

Found: C, 76*35; H, 8.10. 

An etheral solution of 5-iso-7-ketodehydroabietic acid 

(LXXXIVa) was treated with an etheral solution of excess 

diazomethane. After evaporation under reduced pressure 

the resulting methyl ester was compared with the known ester 

by thin-layer chromatographic technique, using 5% chloroform-

95% ethyl acetate as the eluting solvent. Identical spots 

were obtained. 

Isolation of 5(6)-epoxy-6-hydroxy-7-ketodehydroabietic 

Lactone (LXXXIII) 

When the normal procedures for formation of 5(6)-dehydro-

6-hydroxy-7-ketodehydroabietic lactone (LXXVII) was altered 

so that the temperature was raised from 55° after several 
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hours to 100° a mixture crystallized on the usual work up. 

Chromatography of 500 mg. of this mixture on 25 g« Silica 

Gel G mixed with 25 g. Celite afforded a reasonable separa­

tion. Eluting with 25$ chloroform in benzene gave 48 mg. 

of 5(6)-epoxy-6-hydroxy-7-ketodehydroabietic lactone. 

Recrystallization from ethanol or methanol gave a pure 

sample, m.p. 241-24-2° . 

Analysis. Calcd. for C20H22°4: C' 73 ° 60 ; H, 6.79; 

0, 19.61. Found: C, 73-35; H, 6.91; 0, 19.68. 

Infrared spectrum. See Figure 3° 

Optical rotation. Mj)3̂  = "10?°8 (c = 0.7, CHCl^). 

Proton magnetic resonance spectrum. See Figure 8. 

Ultraviolet spectrum. A max- 212, 260, 312 milli­

microns. Xmin. 232, 288 millimicrons. 

The second portion eluted off the columns was a 67 mg. 

mixture of two lactones. Continued elution with the same 

solvent gave a total of 359 mg. of 5(6)-dehydr0-6-hydr oxy-

7-ketodehydroabietic lactone (LXXVII). 

5-Isodehvdroabietonitrile 

5-Isodehydroabietic acid (LXXXIa), 400 mg., was refluxed 

with 10 ml. of thionyl chloride for 2 hours. After vacuum 

removal of the excess thionyl chloride the residue was dis­

solved in dry tetrahydrofuran and added to a lithium amide 

suspension, prepared by the addition of 700 mg. of lithium 
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and a few crystals of ferric nitrate to 200 ml- of liquid 

ammonia. The mixture was stirred for 2 hours and left stand­

ing until the ammonia had evaporated- The residue was 

decomposed with 10$ hydrochloric acid and extracted with 

ether. Evaporation yielded 260 rag. of nitrile-amide mixture. 

This was combined with 10 ml. of thionyl chloride and re­

fluxed 8 hours . After the excess reagent was removed under 

reduced pressure water was added and the solution extracted 

w i t h  e t h e r .  E v a p o r a t i o n  o f  t h e  s o l v e n t  g a v e  2 3 6  m g o f  

brown oil. Chromatography on alumina activity III gave 

120 mg. of almost clear oil, b.p. zsyl45°/0„75 mm. Eg-

5-Iso-6,7-diketodehydroabietol Acetate (CXIII) 

To a solution of 200 mg* of 5-isodehydroabietol ace­

tate, dissolved in 2.5 ml » of acetic acid, was added 250 mg. 

of chromium trioxide, dissolved in 1 ml- water and 4 ml. 

acetic acid. After stirring at room temperature for 16 

hours, saturated sodium chloride was added and the mixture 

extracted with ether. The ether extract was washed with 

5% sodium hydroxide and with water, dried, and the solvent 

removed to yield 209 mg. of neutral material. Trituration 

with hexane followed by crystallization from hexane gave the 

yellow crystalline 5-iso-6,7-diketodehydroabietol acetate, 

m.p. 102-108°. 
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Analysis- Calcd, for C22H28°4: c> 74.13; H, 7-92° 

Found: C, 73 = 93î H, 8.03. 

Infrared spectrum. See Figure 17 » 

Optical rotation. H |2 = +115-4 (c = 0.91, CHCl^) 

Optical rotatory dispersion curve. See Figure 20. 

The basic extract was acidified and extracted with 

ether. The ether extract was washed with water, dried and 

evaporated yielding 13 mg, of acidic material. 

Hydrolysis of C-4 Esters XXIIIb, LXXVI, Xle and LXXIII 

General Procedure. A solution of 80 mg. ester, 

0.6 ml. of 10$ potassium hydroxide, and 4 ml. ethylene gly­

col was refluxed (bath temperature 195-200°) for 4 hours. 

The solution was cooled, diluted with water acidified with 

6 N hydrochloric acid, and extracted with ether. The ether 

extract was washed with water, 5% sodium hydroxide, and 

dried (magnesium sulfate). The aqueous extract was acidi­

fied, extracted with ether and dried (magnesium sulfate). 

Methyl Dehydroab i et at e (XXIIIb) 

From 80 mg. of methyl dehydroabietate was obtained 

40.5 mg. of ester and 39.2 mg. of acid. 
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Methyl 7-Ketodehydroabietate (LXXVI) 

From 80 mg. of methyl 7-ketodehydroabietate was ob­

tained 1 mg. of ester and 72«5 mg. of acid. 

Methyl Desoxypodocarpate (Xle) 

From 80 mg. of methyl desoxypodocarpate was obtained 

76.2 mg. of ester and 3«5 mg. of acide 

Methyl 7-Ketodesoxypodocarpate (LXXIII) 

From 80 mg. of methyl 7-ketodesoxypodocarpate was ob­

tained 57•5 mg. of ester and 17»3 mg. of acid, m.p. 185-195°-

Analysis. Calcd. for C^yRggO^: C, 74.97; H, 7.40. 

Found: C, 75-25; H, 7-59-
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SUMMARY 

The conversion of dehydroabietonitrile to desoxypodo-

carpic acid azide enantiomer and 6-oc-hydroxydesoxypodocarpo-

nitrile enantiomer nitrite has been achieved and the inter­

mediates characterized. The conversion of these compounds 

by photolysis to a degradation product of atisine, a diter-

penoid alkaloid has been only partially successful. 

The degradation of the C-13 isopropyl group of dehydro-

abietane to carboxyl derivatives as well as its conversion 

to A15'16 
dehydroabietene has been achieved. 

5(6)-Dehydro-6-hydroxy-7-ketodehydroabietic lactone has 

been converted to 5-isodehydroabietic acid. Methyl 5-iso­

dehydroabietate has been oxidized to the C-7 monoketone and 

6,7-diketone. Lithium aluminum hydride reduction of methyl 

5-isodehydroabietate yielded the alcohol which was acetylated 

and oxidized with chromic acid to the 6,7-diketone. The 

5-isodehydroabietonitrile was prepared from the acid. 

Zinc-acetic acid reduction of 5(6)-dehydro-6-hydroxy-

7-ketodehydroabietic lactone yielded 5-iso-7-ketodehydro-

abietic acid, while Clemmenson reduction of 6-hydroxy-7-

ketodehydroabietic lactone gave 5-isodehydroabietic acid. 

Huang-Minion reduction of cis-podocarpal enantiomer 

gave cis-podocaroane. Lithium aluminum hydride reduction 
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of methyl cis-podocarpate yielded the alcohol which was 

acetylated and oxidized to the 7-keto derivative. 

An efficient method for the hydrolytic decarboxylation 

of methyl A^'^-7 ketopodocarpate enantiomer and methyl 

'^-7 ketodehydroabietate is described. 

The rate of hydrolysis of methyl dehydroabietate and 

methyl podocarpate and their 7-keto derivatives has been 

compared. The hydrogénation of methyl A^'^-7 ketodehydro-

abietate to methyl dehydroabietate is described. 

Various A-B cis and trans derivatives as well as ring-B 

oxygenated derivatives of aromatic diterpenes have been 

prepared and their conformations determined by means of nu­

clear magnetic resonance and optical rotatory dispersion 

methods. 

The stereochemical relationship of the C-5 and C-6 

hydrogens of 6-hydroxy-7-ketodehydroabietic lactone has been 

established. 
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